pro Fit 5.1

User's Manual

QuantumSoft
Postfach 6613
8023 Zrich

Switzerland

http://www.quansoft.com

End User Licence Agreement

pro Fit © 1991-1998 QuantumsSoft
All rights in this product are reserved.

This end-user licence agreement describes the rights and warranty granted to its customers b
QuantumSoft (“the Publisher”). By using the pro Fit Software package you the customer are agreeing tc
be bound by the terms of this agreement, which includes the software licence, software limited warranty,
and hardware limited warranty.

1. Licence: The Publisher grants the customer and the customer accepts a perpetual, non-exclusive, an
non-transferable licence to use thFit software (‘software') so long as the customer complies
with the terms of this Agreement.

2. Copies: The Publisher grants the customer the right to make copies of the software for back-up
purposes only. The customer agrees to reproduce and incorporate the author's copyright notice o
any copies. It is expressly understood that such copies will not be used for any purpose except t
substitute for the initial copy in the event that it is unusable.

3. Use: In addition, the licence granted herein includes the right to move the software from one
computer to another provided that 1-user versions of the software are used on only one computer &
a time and that two people will not use the program at the same time on different computers.

4. Security: The customer agrees to secure and protect the pro Fit software package, the
documentation, and copies thereof from copying (except as permitted above) or from modification
and shall ensure that its employees or consultants do not copy or modify the product.

5. Ownership: The Publisher represents that it has the right to grant the licences herein granted.

6. Limited Warranty: Whilst all reasonable efforts have been made to test the software and user
manual prior to first publication, the authors and Publisher welcome corrections being brought to
their attention.

The liability of the Publisher in respect of any defect, error, or omission in the disk, user manual, or
software (‘defective material’) and in respect of any breach of warranty or condition is limited to the
purchase price paid by the customer. The Publisher shall have no liability whatsoever arising out of any
defect, error, or omission or breach of warranty or condition unless the customer shall have returned the
defective material to the Publisher within 90 days of the date of purchase. In that event the Publisher shal
as requested by the customer, either replace the defective material without charge or refund the purcha:s
price paid by the customer in respect of the defective material.

The Publisher (or the authors or copyright-holders) shall have no further or other liability including
without limitation in respect of damage to other property or in respect of any economic or consequential
loss of whatever nature arising out of or in connection with the product or any part thereof or its use or
application.

Should you have any questions concerning this licence or this limited warranty or if you want to contact
QuantumSoft for any reason, please write to:

QuantumSoft

Postfach 6613

8023 Zirich

Switzerland

e-mail: profit@quansoft.com
www. http://www.quansoft.com

Copyright:

Developer.

Trademarks:

Customer Support:

proFit © QuantumSoft 1991-1998

All rights reserved. No part of this publication or the progrant-nmay

be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language in any form or by any
means, electronic, mechanical, magnetic, optical, chemical, manual,
biological, or otherwise, without prior written permission of the publisher.

The information in this user's guide is subject to change without notice.
This guide refers to version 5.1 of pro Fit.

QuantumsSoft, Postfach 6613, CH-8023, Zlrich, Switzerland.
http://www.quansoft.com

Macintosh, LaserWriter, Classic, are registered trademarks of Apple
Computer, Inc. Finder, MultiFinder, System 7, Mac OS 8, PowerBook,
Macintosh Duo, Macintosh Quadra, PowerBook Duo, MacWorkStation,
Quickdraw, Quickdraw GX, Balloon Help, Power Macintosh and
Macintosh Programmers Workshop (MPW) are trademarks of Apple
Computer, Inc. PostScript is a registered trademark of Adobe Systems
Incorporated. Think Pascal and Think C are registered trademarks of
Symantec Corp. Metrowerks is a registered trademark of Metrowerks Inc.
CodeWarrior is a trademark of Metrowerks Inc. MacDraw and ClarisDraw
are registered trademarks of Claris CorporationFiris a trademark of
QuantumSoft, Zirich

For information and customer support contact QuantumSoft at the
following address:

QuantumsSoft
Postfach 6613
8023 Zirich
Switzerland

Fax.: +41 (1) 481 69 51
e-mail: profit@qguansoft.com
web: http://www.quansoft.com/

If you need to contact QuantumsSoft for support, it would help if you have
the following information to hand:

 your serial number

* the version of the software you are using

* A detailed description of what you were doing when the problem
occurred

* any special information, e.g. the type of printer, if it is a printing

problem

Table of Contents

1 o Yo 1003 1o] o 1 1
How to read thisS ManUAL.............c.ue i et 2
= F T (ol o] [0 =T o KPS 3
Changes between versions 5.0 and 5.1......ccoo i 4
1S = U1 = 1 Ao] 1P 1
The INStallation PrOCEAUIE...........cceiiee e ab e e e re e e e eraea s 1
[T (0T L ARV Z=T £ £ S 1
Getting STArtEUeii i 3
A TIFSE SESSION ...ttt et e e et e e at e e e be e e e beeeeabeeesateeeeabee e naeeebeeesnbeeennnes 3
(@ U 0 F= 1 = OO 3
= L ([T T o {0 N | S 3
ENtering the datal..........cooeiiiieie et 3

[(o 1T o T = = = SRS 5

A TUNCHION 1O fit QU AALA ...ceveiiec et be e e e re b sare e 7
Intermission: Previewing the data and the function...............cccoeeeeiee e, 9
111 0o TR PSPPSR 10
Defining YOUr OWN FUNCHIONS.ccueiiiieiieeie ettt b e e 12
WIIEING PrOGIAIMS ...ttt e et b et b e bt st e e e e e e e sb e st e sbe b e nreeneeneennas 15
Working With data ..o 1
D=1z N =To [11] 0o PO RSP PTOPR 1
THE data WINAOW........ccoiiiiieiie et ettt e et e e e etae e e are e e be e e sbeeeebeeesbeeesnreeas 1
Y= [Tt (T o TR0 F= - R 2
D2 Lz W1 01T RSP 2
1= g o o F= L= USSR 3
Data tranSTOrMALIONc.ei ittt s be e s re e sbe e saeesnreesaeesnneens 4
Algebraic transformMatioNsoociiiii i 4

O LTt o] (0T [£= 1 4 ST O PPPOPPRR 6

(D F 1= W £=T0 [0 o3 1 o] o H OO SRRSO 6
Yo 1] o 0 = = SRR 6
TraNSPOSING TALAc.eieeieiiieite sttt bttt e e e a b e ne e 7
Statistical analysis Of @ data@ SEl........ccecviiieiieie e s 7
FOUNEN raNSTOMMS..... ..ot e e et e e s e e e e e s enreeaeeenraeeans 8
Defining a data Set 10 WOIK ONociiiieciicce sttt 11
Working With fUNCHIONS. ... e 1
T r0To [UTed 1 o] o FH RO ERRS 1
PaAFAIMEBLEIS.ttt e e e e e e e e e e e e et s e e s e e b b a e b b e rarr e e et eaaaaaaeaeeeeeaananaanes 1
Setting one of the parameters of a function to be equal to the value of x........... 2

Table of Contents

\Y

USING TUNCHIONS ...ttt b ettt ettt b b e nns 3

Calculating fUNCHON VAIUES...........coiiiiieiiie et 3
OptiMIzation Of FUNCHIONS ..o et 4
1T [T T o o £SO 4
Finding minima and MaXiMaccccoviiirininineee s s sbe s eneas 6
FaTC=To] =14 o o [PPSR 6
The SPlINE FUNCHON.........oiiiie e e e e s e e ene e e e nnree e e anns 7
6 The Preview WINAOW ... e e eenes 1
PrevieWw WINAOW TOOIS.oiiiiie ettt snee e saaeesneeeneas 3
Selecting data points with the arrow to0l ... 3
Changing the ranges of the PreVIEW...........o e s 3
Dragging the fUNCION CUINVE..........c.oi i 4
Inspecting and editing COOTdINALEScccueiriiiirieie e 4
Managing COOrdiNate MAIKEIScocuiiiiiiereeie et ee s 5
TIPS AN TFICKS ..ottt et e e st et eere e besaeesaeeseeneesseennesanenrennnens 6
Using the preview window during @ fit..........coooiiriiinneneeeeeee e 6
Choosing initial values of fUNCtiON parameters.........ccoerererieiererere s 6

7 Drawing and PlOtlNG ..o 1
The drawing WINAOWc.ccceeiiiiiiiciie ettt e st te e steeseesseessesseesreesesneessennnens 1
DraWiNg TO0IS.....c.eieeieeee ettt ettt e e et b e ne e enne eas 1
Coordinates, accuracy and drawing iNfO..........ccooiueeiiieniiieniee e 2
Drawing ODJECIS ..ottt s et st see b nneas 3
D= U1V S 3
General drawing COMMANASccooiiiiiiieiieccee e e re e e e 3
Objects created with the t00IS palette ... 5
QLIS (A0 o] =T £ 6
Rectangles and EllIiPSES ... e 7
LINES @Nd POIYGONS......oniiiiieiie ettt ettt b e b e 7
0]] KSR 9
Editing drawing ODJECESooeiiiieeeee e et s 11
EXPOITING PICTUIES ...ttt b e 13
Saving a drawing as a PICT or EPS file ..o 13
Exporting pictures over the clipboard...........oco e 14
Exporting pictures using PUDIISNErS ... 14
TgaToTol u T To T 01101 (1] (=TSP 15
Importing pictures over the clipboard or using Drag&Drop........ccceeveneneniene. 15
Importing pictures by SUDSCIIDING.........cooiiiii e 16
PIOTHING .. 16
LCTcT LT o1 o] 0] 1] o USRS 17
PIOHING @ TUNCLION ... et 18
PlOtHNG @ AA SELeeiieiiicieeee et sbe e 19
Graphs and 1EGENAScoo e 21
= 1] o T 1= o T =T g o KSR 21
EdItING grapiS ..o e 22
AAXEBS e h e e R e Re e e e b e e e e are e e ane e e e ne e e nne e e aneeennns 23
Curves and data POINEScccveieiiee et re e e aeennas 29

Vi Table of contents

Grid 32
Graph STYIES.... . ea s 32
Graph coordinates and ZOOMINGcceveriririieiierere et sre s 34
T o 1
Mathematical DaCKgQrOUNd.............coeoiiiieececec e e 1
Distribution functions and data Weights............ccccooiiiiie e 1
The mean square deviation: Chi-Squared...........cccoorriiieieiesereeeees 4
ZLEIO X-BITONS ..uteeiueeeteesseeeseesseeaeeesseeaseeaseesse e e seeaseeeseeaseesaseeaneeanseeseesmnesneeannesaneennnennns 4
The “usual case”: Chi-squared and ZEero X-€rrorsSccccvceeieeeireeseesieeeseeseeesseenns 4
Error analysis and confidence INEervals ... 5
(Yo = 1o o] 111 T 1 S SRPSRI 5
The Monte Carlo algorithm 6
The Levenberg-Marquardt algorithm............cocov i 6
Partial derVALIVESooiiiiieseseeee ettt sneeneas 7
Estimation Of Parameter €ITOrIScov i 7
The Robust minimization algorithm............ccooiiii e 8
The Linear Regression algorithms ... 9
The Polynomial fitting algorithmccoooiiiii e 10
GOOANESS OF fiL.....ve ettt bttt b et sbe e e 10
Literature and suggested readingccoouuiererieriereeesee e 10
THE fILEING PrOCESS ... ettt e e e e te s aeesse e e eaeeseeneesreenseannens 11
GENETAl FEALUINES ...ttt neenneeneas 11
Parameter lIMItS.......coccoieeeieseee e e e e e eee e e sreenenneens 11
U T o T | S 12
Inspecting the progress Of @ fit ..o 14
Error analysis and confidence intervals..........cccovreninicieseseeese e 14
FIEING FESUILS et ettt e s et e e saeenneennens 16
Using the various fitting algorithms ... 16
Using the Levenberg-Marquardt algorithmcccccvvveveeciccesece e 17
Using the Robust minimization algorithmccccocoeeiiiicicc e 17
Using the Monte Carlo algorithm............c.cooiioiiiii e 17
Using the Linear Regression algorithm............cccceeiiiii e 18
Using the Polynomial fitting algorithm...........ccccoovieiii e 19
Fitting multiple functions and X-ValUES...........ccccoiiieiicie it 19
Functions with multiple X-ValUES.............cooiiiii e 19
Multiple functions With 0Ne X-ValUE ..o 21
Multiple functions with multiple X-ValUEs..........ccccvevieiiieeiice e 22
General hints fOr fittiNGoovececccee e e 24
StartiNg PArAMELEIS.ccueiiieieeie ettt b e s essae e s seeesbeesbeesnreesneeens 24
RedundanCy Of PAramMEetErS. ..ot 24
The errors of the data Sel..........cvciiiiie e 24
Defining functions and pProgramsS.........cooiiiiiiiiii e 1
SIMPIE EXAMPIES . e st e s b e et e e b e e e aee e sbeesneeereeaneas 2
DEefiNING TUNCLIONS ..ottt e sb et 2
D]] g TTTo T o] oo | =T USRS 5

Table of Contents

Vii

YNy o (o] ¢ (10 | OO OO TR R TRRRRRUURURTPRRRRR 7

On-line help for ProgramMINg...........co oo sn e e 8
THE NEIP MENUS ... e esr e re e 8
Browsing functions and Programs.......ccc.eceeieeiieeniee et e e nree s 8
Finding the definition of @ SYMDOL ... 9

Automatic Macro RECOITINGccciiiiiieiieie ettt nneeneas 10

Syntax of function and program definitioNS.............cooiiiiiiiieee e 11
Program definition SYNTAX........ccuiruieiieeiierie ettt b e sanes 11
ez .01 = 14
00} o 1 J SOOI 16

The WHIlE-100P .. 16

B L= 0] 1 0T o IS 16
LIS (=] 0 1=T= U (oo o I 16
Loop control statements: cycle and [eave.............ccooveviiiiiiiieniic e 16
Optional ParamMEter lISES.........cueeiii i e e e eneeens 17
Aborting procedures, functions and Programs.........cccoeverereneeieereesesese e 18
Predefined constants, functions, procedures, and Operators........c..cccocerererennenn 19
FUNCLioN defiNition SYNTAX..........cciiiiiie et eree e 20
Alternative FUNCHION SYNTAX........ccoiiiiiriiieieieeee e s 23
Special procedures in a function definition............ccoceevvvceere e, 23
FUNCLON CRECK ..o 23
Procedure INITANZE..........c.oooiieee et 24
ProCedure DENVALIVES ...t s nee s 24
PrOCEAUIE FISt.....eiiiieeee et e 25

[(o Tod=To [= = 1 TP 27

YU 0] 0T 2RSSR 27
General comments about Programming...........ccuueeeeeeeiiiieeeeee e e e e esrreee e e e 27
1IN/ LS PRTRR 27
1. SIMPIE NUMETIC tYPES: ...eiceeeiecie ettt esreennas 28

P o]0 01 0] 123 Q1] o[RS 28

3. StriNg and Char YPES:o 28

F 2\ T PRSPPSO 29
THE COMPIIET ...t n e e e aneeens 30
DEDUGGING .t 30
Comparison to standard PasCalccccccviieiieie i 30
External functions and Programs..........ceoeeieiinenenee e 31

USING Pro Fit MOGAUIEScceie ettt e ae e 31
Saving functions and Programs ..ot 31
Loading functions and Programs..........cccceeereeieseeseeieeseesie e e eseesee e seessee e snee s 31
Removing functions and programs from the menus.............ccccceiiiiiiin e 32
Loading modules automatically on Startup........cccoevenerienienienieieee e 32
Loading a set of modules together with a new preferences file............ccccccvvvennnns 32

10 Working with external modules..........coooiiiiii 1
Loading an external MOAUIE...........c.ooii i 1
Creating an external MOAUIEccooeeiicie et 1

Metrowerks Code Warrior Pro for Power Macintosh............ccccccovviiiieniiiiiiienecs 3
Metrowerks Code Warrior Pro for 68Kccccveiieienieereseseee e 3

viii

Table of contents

Think C or Symantec C++ (fOr 68K)........cccueriiiriiieiiieriie e 4

Think Pascal (fOr B8K)ccieiueiieiiee ettt ne e 4
MPW C/C++ 0r PasCal fOr B8K...........coouiiiiiiiieiiieieeree e 5
MPW C/C++ for POwer MacCintOShcccoceiireseece e 5
Other COMPIIEIS. ...ttt be et nnes 5
Writing an external MOAUIEcooiei e 6
Routines to De MOAIfIEd.........coui i 6
Routines to be defined in functions and programs............coocveeeeriieeesniiee e 7
Routines to be modified in external programs only............ccccceoviiciieeee e ecciiieeee e 7
Routines to be modified in external functions oNly...........cccoveeeieiiiiiiieee e 7
Predefined constantS and tyPeS........ooviiuieiiiiiie e 10
GloDAl VANADIES ..o e 12
Procedures provided DY Pro Fit..........ooo e 13

L d APPIE SO P et 1
[T (oo [1 o3 1[0 o PSSRSO 1
EXAMPIES.....ceee bbb e b e e n e ene 1
Opening and closing a SiNGIe file ..o 1
BAtCh PrOCESSING ...c.ui ettt st e esreere e e saeenesneene s 2
When to program, When t0 SCHPL ..o 4
Apple Script commands and ClaSSES..........cocueieeiiiie s 5
Required Suite: Events that every application should support.........cccceeevvvernnnns 5

pro Fit suite: Special commands for Pro Fit ... 6
Classes 0f the Pro Fit SUILE..........c.ueiiie et 15

O e 1 14T o 1
Printing fromM Pro Fil ...ttt e re e 1
Printing With QUICKDIAW GX......ooiiuiieiiie ettt e s e nneeennes 2
Printing WIith POSESCIIPL.eiiiiiiiieeeeeeee e 2
Printing at full printer reSOIULIONoouiiieceee e e 3
Printing a pro Fit drawing from another application...............cccccooeciiiee e, 3
L 3 PI e I BN C S e 1
= 10T I T T = OSSR 1
Pan@l “PrintinNg”coooiiieeee sttt ettt e b b neeneas 2
Panel “PICT OPLIONS”ooiiiieieeeeiesie ettt sttt ee e sbeeeesseeseeeneesneenneas 2
=T 1= B I > 11 T USSP 2
PANEL “PrEVIEW ...ttt sttt et be e beete et e sbeentenneenreas 3

= 10T I] (T = T =TRSO 4
PaNEI “PrefS fll7 ... e e re e nnae e 4
14 General fRatUIES ..o e 1
(CT=yux [T T 1= o OSSP 1
HEIP DAIIOONS ...t ettt ae e e 1
THE Pro Fit GUIAE ..ot s 1
On-line evaluation of mathematical EXPreSSIONS........ccoceoiriririrereseeee e 1
FIlE N0 s 3
[T T0 =TT B =T o] F= Vo = OSSPSR 4
Shortcuts and OthEer OPLIONSc.cciiieiece e et re e 5

Table of Contents

iX

Appendix A: Predefined functions, procedures, and arrays ccccoeveinennnn. 1

FUNCHIONAI GIOUPS ...ttt bbbt e e bbb nre s 1
(@ 01T =1 (0] 1T PP UPRROTPRSTRI 1
Mathematical functions and CONSLANTS..........cooiiiiiiiiie e 2
DAtA PrOCESSINGeeviivirieriieiieeee ettt sttt ettt st b e st b e b e e st e se e s et e s e besbesreenenneas 2
Accessing the data WINAOWcccciiieiieie e sre e 2
TaToTU =T g o [0 U1 0] | ARSI 3
D= 1171 o TP O SRS TTTPTPRPRORON 3
Lo e o T I= W =T o o USSR 5
Creating and accessiNg graphS ... e 6
Editing the CUITeNt graph......o e 6
Setting default PAramMELErS.coocii e e e 7
Using other fUNCLIONS OF PrOGIaMSccueiiiiieieeieseee et ee e e sreeeesaeeeeas 8
NUMENICS ON TUNCLIONScveeieciecieieee sttt e e sreeeesneenneeneeas 9
111 S PRRSS 9
Using WINAOWS and DOCUMENTS.........coiitiiiiieiiieiee ettt 10
String and character manipulation ... 11
Miscellaneous auxiliary rOULINESccccccvieeieeiie e 12
Advanced routines for external modules oOnly..........cccooviiiiininieccseee 12

AIPNADETICAL TIST ... et st a e nne s 13

Appendix B: AbDout nUMbDErs .o 1
Appendix C: File formats ..o 3

D2 L PRSP PPRTRN 3
The default teXt fOMAL..........oooii e 3
LOAAING TEXE TS ...t 4
S T= 1V] o I (= A 11 S 5
The native data fOrMALcooo i 6

D= 1Y T T 1 PSSR 6

X

Table of contents

1 Introduction

proFit is an interactive tool for the investigation, analysis and representation of functions and data. It is
designed for users in science, research, engineering and education. The key featuFéshol @ne:

» Customized functions and algorithméery powerful and simple Pascal-like syntax for defining
mathematical functions, data transformation algorithms, drawings, and general macros.

* Interactiveparameter modelingndcurve fitting Intuitive interface for modeling and fitting data.
Various fitting algorithms. Optional restriction of parameter ranges. Support for y- as well as x-
errors. Statistical error analysis for fitted parameters.

» Professional plottingAccurate and flexible graphical representations of mathematical functions and
numerical data. Multiple coordinate axes. Linear, logarithmic, 1/x, and normal probability scalings.
Reverse scaling. Coloring of areas between curves and any axis. Editing of any part of a plot witt
standard drawing tools.

» Drawing editor Support for standard drawing objects, Bézier curves, two different kinds of
polygon smoothing, texts with sub- and superscripts, data point symbols, and any imported picture
Dash patterns are applicable to most drawing objects. Arrows are available for smoothed and ur
smoothed polygons and simple lines. The drawing editor supports colors, views at different
magnifications, and extended precision positioning of graphical objects. The floating point
coordinates of drawing objects can be edited graphically and numerically.

» Customizable graphical elemenBash-patterns, line thicknesses, arrows, error bars, and data point
symbols can be customized. New arrows and data point symbols can be designed with a graphic
editor and added to the standard drawing menus.

» Extensive graphical output possibilitieSupport for PostScript™, PICT format, high resolution
bitmaps, and QuickDraw GX™. Export of drawings with Copy&Paste, Drag&Drop,
Publish&Subscribe, and EPS files.

« Spreadsheet data managemepreadsheets for editing and transforming data. Predefined and user
defined algorithms. Single precision as well as double precision data columns and text columns ar
supported.

« Scriptability and RecordabilityAutomatically record all your actions as a Pascal program or Apple
Script for replaying them later.

» Function and data previeviReal-time automatic display of the current function and data. Interactive
graphical editing tools for function parameters and data points..

» Externally compiled codémport functions, algorithms, and other programs written in your favorite
programming language or in Apple Script.

» On-line evaluation of mathematical expressioherever pré-it expects numerical input (such as in
spreadsheets or dialog boxes) any mathematical expression can by entered

» Drawing from a programproFit programs can directly draw in gfd’s drawing windows to create
drawings with high precision coordinates. These drawings are available for copying and pasting intc
other applications and for high resolution printing.

Introduction 1-1

* Macro programmingWrite complete macros to perform common tasks such as opening and closing
document windows, fitting, importing and exporting files, etc.

» Extensive on-line helBalloons and Apple Guide™ provide answers and explanations. A dedicated
on-line help is available for function and program definition.

» Powerful plug-ins Various external modules further increase pro Fit's power, e.g. for contour
plotting and 3D plotting of functions and data sets (3D plotting requires a Power Macintosh with
QuickDraw 3D).

* And much more:.Such as Drag&Drop, Publish&Subscribe, Numerics algorithms, customizable
data file import, etc.

What you need to run pFat:

proFit runs on Mac OS with System version 7.5 or later. gfib requires at least 2 MByte (suggested

4 MByte) of free memory — if virtual memory is off, the Power Macintosh native version requires at
least 3 MByte (suggested 5 MByte).

The QuickDraw GX features are available when running with the QuickDraw GX extension installed.
The QuickDraw 3D modules run only on a PowerPC machine with the QuickDraw 3D extension
installed.

How to read this manual

This manual gives a full description of gfiv 5.1. If you do not want to read it, you will still be able to

find your way through prbit: proFit was designed to be used without a manual and most of its features
are self explanatory. Extensive on-line help is provided. However, you will need to read the manual tc
efficiently work with some of prbBit's most advanced features.

Those of you who are already familiar with pi05.0 are referred to the last section of this chapter,
"Changes between versions 5.0 and 5.1". Then you may go directly to the chapters giving in-deptl
information on the new features.

Those who prefer a beginner's introduction should continue with "Getting started”, which gives an
overview on the most common features offto

A description of the basic concepts of prbis given in the next section.

1-2 Introduction

Basic concepts

proFit works with data, drawings functionsandprograms(or, throughApple Eventswith other
applications oAppleScripts

Functions Programs
N N
y:=a[1]*sin(x) NewWindow(

fori:=1to 10

datali,1]:=i;

AppleScripts Data
A A
X y
tell applicatio 1.00 0.23
open file da 1.10 0.38
run programn 1.20 0.13
close windo

Plots Drawings
N NN
OO
-4 Al
NG,

You can entedata into spreadsheet windows. Data can be transformed by built-in transformation
algorithms, (e.g. sort, transpose, filter, Fourier transform, or mathematical operations) or by user-
defined ones. Data can be text or numbers.

You can define your own data transforms by wrifomggrams, which can access directly the data in

the spreadsheet window. pro Fit translates these programs into computer code, which can be execut
directly by the central processing unit of your computer. Youateomate many operations using

such programs or Apple Events and Apple Script.

Functions can be used for plotting, analysis and fitting. There are a number of built-in functions (such
as log, cos, exp, etc.). You can define your own functions using the same simple, yet powerful
definition language used to define other programs and macros.

Functions and programs can also be defined using an external compiler (external modules).

You can plot your functions and data sets draving window. proFit offers most standard features
of a drawing program, and the appearance of all graphical elements is customizdbteggrerates
high resolution printer information for direct printing or for exporting data via the clipboard,
Drag&Drop, or Publish&Subscribe.

Introduction 1-3

Changes between versions 5.0 and 5.1

proFit 5.1 brings various new features. This is a list of the most important ones:

Recording

Programming

Functions

Fit algortithms

Data Windows

Print Preview

Graphing

User Interface

pro Fit 5.1 is fully “scriptable” and “recordable”.

pro Fit 5.1 can automatically “record” your actions into a program or an Apple
Script. The program or script can then be run to repeat your actions. To record
a program, use the commands “Start Recording” and “Stop Recording” from
the Customize menu. To record an Apple Script, use a scripting application,
such as Apple's Script Editor.

The built-in programming syntax has undergone major improvements.
Complex numbers are now fully supported in function and program
definitions. Arrays and strings are also available. All predefined functions
work with complex numbers. Parameters can passed as “var”. Many new
commands have been added for fitting, plotting and other operations, making
every single operation of pro Fit 5.1 accessible by a program. Most of the new
commands use “named” parameters, i.e. a name precedes each parameter — thi
lets you omit parameters if you want to use their default values.

Function parameter sets can be managed in a much more flexible way in pro Fit
5.1. Function parameters can now be stored with the function definition, with
the function code, or with any other file, they will become available
automatically when a function is added to the Func menu.

New, special purpose fitting algorithms for linear regression and polynomial fit
are available.

Data windows can now have up to 16 million rows and columns as long as
sufficient memory is available.

A command “Print Preview” (in the File menu) lets you preview how your
data-tables, functions, and drawings will look in print.

New features are provided for editing graphs: Axis labels can have a common
prefix and postfix. Axes can be inverted (i.e. an axis can extend from 1 to —1).
The new user interface style and contextual menus introduced with MacOS 8
are supported.

Some of the menus have been rearranged for better accessability.

1-4

Introduction

2 Installation

The installation procedure
Installation of pro Fit is very easy. Just double-click the self-unstuffing archive to copy all required files
onto your hard disk.

Before installing pro Fit, read the “read me” file if any such file came with the package.

pro Fit versions

pro Fit 5.1 comes in three versions:

pro Fit 5.1 (ppc): A version of the application running native on PowerPC machines. This is by far
the fastest version but it runs only on PowerPC machines.

pro Fit 5.1 (68k): A version of the application optimized for a Macintosh with a Motorola 680x0
(68k) CPU without floating point unit (FPU). This version runs on all Macintosh models but is not
optimized for the Power Macintosh or for 68k models equipped with a floating point unit.

pro Fit 5.1 (fpu): A version of the application optimized for a Macintosh with 68k CPU and floating
point unit (FPU). This version is faster than the non-FPU version but does not run on Macintosh
models without a floating point unit. Neither will it run on Power Macintosh models.

Installation 2-1

3 Getting started

A first session

This chapter describes a typical pibsession. It shows how to enter new data, plot it, and how to fit a
mathematical function to it.

Our data

The world’s human population is growing rapidly. Table 3.1 shows the number of inhabitants of this
planet for the period after 1940

Table 3.1 The world’s population since 1940

year population in millions
1940 2200
1950 2500
1960 3000
1969 3600
1975 4000
1981 4400
1987 5000
1990 5300

Let us plot and analyze these figures.

Starting pro Fit
First install pro Fit on your computer, as described in the Chapter “Installation”. Then

* Double-click pro Fit.

pro Fit comes up with the following windows: The results window is used to output results of
various calculations. The parameters window lists the parameters used by the current function an
allows you to edit their values. The preview window shows a “real-time” preview of the current
function and data set.

(Close these windows if you do not want them. When you need them again, choose their name fror
the Windows menu.)

Entering the data

First, you must enter the numbers given in Table 3.1 into a data window. To do this, you have to open
new data window.

1. Choose “New Data” from the File menu
An empty data window appears.

Getting started 3-3

Data are arranged in horizontal rows and vertical columns. The topmost cell of each column shows th
name of the column (by default ‘Column 1, ‘Column 2’, etc.). The cells below contain the data of each

Lintitled Data 1

2

1 *

[=z i

&

TuTe ¥ m

WO 00 [l [JCT [P |G Pl [

-

1

S
I |

Z

column.

2. Click into the first empty cell of column 1 and enter the first year, 1940.

We fill the first column with the years and the second column with the population. The first year is
1940.

. Click into the first cell of column 2 and enter the population in millions,
2200.

. Repeat steps 2 and 3 to enter the other years and population figures in the
following rows.

Enter the values given in Table 3.1. Note that you can use the arrow keys, the tab and the return
enter key to move from one cell to another.

. Enter the column titles, ‘year’ and ‘population in millions’.

Click into the titles ‘Column 1’ or ‘Column 2’ and enter the new names. Move the mouse to the
vertical separation line to the right of the second column title, click, and drag the separation line €
little bit to the right, so that you see the complete title. Your window should now look like this:

3-4

Getting started

[0 = population.data example = F EH
bi 1 I 2 iy
k. year population [Mic]] |5
[LI - 134000000 220000000
[2) ..133000000: 2300.00000:

[..) ..196000000: 2000.00000;
[4 ... 126200000 3e00.00000;
[3| .1 303.00000: 4000.00000:
[.. 6| ...1981.00000: 440000000;
[7)..1287.00000: 500000000
[8| ..133000000: 35300.00000:

[SN N _
[10| -
4 [|

6. Save the data by choosing “Save As...” from the File menu.

You are prompted to enter a name for your file.

Plotting the data

Now that we have entered the data, we can display it graphically.

1. Choose “Plot Data...” from the Draw menu

A dialog box appears:

Plot Data
[] Plot into current graph] Open new window
X-axis Y-axis
[X1 #][lin 4 |MAutorange ||[Y1 #][lin | % | Autorange
Data window | population.data 4 |
X column | year 2 |
Y columns [] Selected rows only
yvear =1 Point [Elj Connected
population in millions) - - -
tine (= * W3

Getting started

3-5

Here you can enter the ranges of the plot, the columns to be plotted, and more. In this introductor
session we can use the settings as they are.

2. Click OK.
A drawing window appears, showing a graph of the data.

Untitled Drawing 2=————— 0B

E?![]

population.data example

N
/

s population [

b 4

0
4

o

-
-
—
—_—

4000

=]
[

T

]
ﬂ:l

o ulakion [hic]
L

2
w
U
=

oo bt
1840 1860 1880

Wear

I
S
=
o
=

i

el (a1
o (8
A 12
| |

ling

r
|

S

1 6068 o y:7.479 em [«] [| »

You can edit a drawing easily. For example, you can change most parts of the graph just by double
clicking.
3. Double-click the vertical axis to change its range.

(Double-click the vertical axis itself, not the numbers to the left of it!) A dialog box called “Graph
Settings” appears, presenting the settings of the left y-axis:

3-6 Getting started

Graph Settings
T T atX= | 1930
General - @ General () Labels O Prefix (0 Lines —
First | 2000 | Last 5500 lin | =
H-axes
- | | ~Draw —— —Ticks [_] custom
ar b axis 1st major |2000
4000 |- || A ticks _
E Distance: | 2000
[+ labels
Curwves s 1 minor # minor |1
Frarne 2000 -
G id Apply e 4 Eancell |mc|

You can change a variety of parameters here. Often you will use the ediFiistdandLast to set

the range of the axis. Another important field is thestance’ field that defines the distance
between major tick marks.

4. Enter O for First and 6000 for Last, then click OK.
The vertical axis of the graph now starts at 0 and ends at 6000.

Double-click other parts of the graph or its legend to change other attributes. Try double-clicking the
horizontal axis, the center of the plot, or the dot in the legend. You can also double-click any text in the
drawing to change it. Or you can choose any of the drawing tools to add lines, polygons, text, etc.

A function to fit our data

The growth of a population can often be described by an exponential function of the type
t—x,U
t) = x ex ' 3.1
p(t) = p(x,) BT, B (3.1)
wherep(t) is the population at timeg p(Xpg) the population at an arbitrary start tisgg andtg its growth

constant.

Let us try to investigate the validity of this formula for the world’s population. We want to find the set of
parameters for which equation (3.1) fits our data best.

1. Choose Exp from the Func menu

Getting started 3-7

This brings the parameters window of the Exponential function to the front. It gives a description of
the built-in exponential function and its parameters:

I=——————————®bbp=———————————-H

parameters | | ¥ !
’V & =|1.0000000 =0 = 0.0000000 o= 1.0000000 const = 0.0000000

selected pararneter
& [multiplicative factor)

Tower limit=[none | [E]Use for fitting

Yy = & ¥ expl-(x-=01/10) + const
exponential function

The window is divided into three regions. The top region displays the function parameters, and lets yol
edit their value. The bottom right region displays information on the selected parameter, the bottom lef
region gives a short description of the function.

The function looks like this:
Ox —x, 0
= Axex + const, 3.2
y pETE (3.2)

which is essentially identical to equation (3.1). The parameters window also displays the default value
for the parametera, Xp, top andconst Starting from these parameters, pitocan find a better set of
parameters for describing our data. But first you must define which parameters you want to fit, i. e.
which parameters you want to vary in order to approximate the data with the Exponential function.

As mentioned above, the starting timggis arbitrary. Let us set it to 1940.

2. Click the number beside * x0’ in the parameters window and enter 1940.
This defines the parameter’s value.
Sincexg is arbitrary, we do not want to fit it:

3. Uncheck “Use for fitting”.
(The check box “Use for fitting” can be found in the lower right area of the window.)

The parameter name changes from bold face to plain text. This indicates that this parameter i
constant and will not be fitted.

(Shortcut: You can also toggle the option “Use for fitting” by simply clicking on a parameter’s
name.)

4. Click the parameter name ‘* const’

We don’t want to fit this parameter, either. The parameter name is not bold anymore and the optiot
“Use for fitting” is unchecked now.

Before fitting, it is a good idea to assign starting values to the parameters that are going to be fitted, i
our caseA andtg. This increases the speed of the fit and the probability of finding the best set of
parameters.

3-8 Getting started

Reasonable starting values for our problem can be estimated easily:

A is the population in the year 1940, so we can set it to 2200 millitgpgnete the minus, it comes
from the different definitions of Egs. (3.1) and (3.2)) is the time within which the population increases
by a factore=2.71.... Looking at the plot of the data in the drawing window, we can easily guess it to
be between 50 and 200 years. Let usgtt —100:

5. Enter the starting values 2200 for A and -100 for fo

Your parameter window should now look like the one below

O

[

parameters | | & i
A= 2200.0000 =0= 13400000 t0=|-100.0000 const = 0.0000000

Yy =& ¥ expl(-(x-x0010) + const
exponential function

selected parameter
t0 Ctirme-constant)

lower limit=[none | [EUse for fitting

| =

Intermission: Previewing the data and the function

Above we have seen how to produce a graphical representation of the data in a drawing window an
how to edit it. You can have a quick look at the graphical appearance of the data (without actively
plotting it) by using thePreview window. This same window also shows you a graphical
representation of the current function.

Select Preview from the Window menu. You should see the following window:

O:anpnnunnunnunnunnunnes: Pragie
[<] Floating [5500.0 |
[<] Show data
[<] Show function [] Auto
[Leg
15000] !
19200 |[9 Aute JLeg[ize00 | 00
4

To the left of the window there are some controls that let you determine what the window must show
and if it must be a floating window or a normal window. To the right are some tools that can be used t
edit and analyze the function and the data.

The window shows the current data set and the current function. If you change any function paramete
the curve will change to reflect the new value (try it!). The window always shows a plot corresponding
to the current set of function parameters and data points.

As you see, our first guess for the function parameters was not altogether bad, but the function doesr
grow as fast as the actual data. The parameter set corresponding to the actual data set can be founc
fitting.

Getting started 3-9

Fitting
1. Choose Fit... from the Calc menu
You can choose the data columns you want to fit:

Fitting Setup

Algorithm | Levenberg-Marguardt | |

—Data Use last choice —
Window [population.data examp... =]] Selected rows only
X column [vear 4| ¥column [population [Mio] % |
X errors | Zero $—— Yerrors[Unknown | $|———
Column Column
Distribution Distribution

Error analysis:

[+l Print full description

[] Print active parameters only | | Cancel I |I‘JKI

The data column settings are already ok. This box gives you also the possibility of specifying errors fo
the data points. For the moment, we don’t need to do this.

2. Click OK to start fitting

Fitting is very fast. When it is completed, the fitted parameters are printed in the results window

3-10 Getting started

|

Results

Function : Exp

exponential

Oata
#* column: year
Ax ouglue o 0.0
& distr .,

g column:

Ay walus
ay distr.

lterations: 12

Fit Algorithm: Lewvenberg-Marquardt
gy = A * expi-Cx—=02/100
function

D population.data example

Gaussian

population [Mial
: hot specified
Gaussian

=
L] » | m

+ const

FParameters:

A = 2113.2935
=00 1940 . 0000
t0 a4, 8120
const 0. 0000

Chi =quared = 1.6958=+4

Standard deviations:
& = 30.2618

atl = 1.0812

NE

The fit yields —54.8 years fag and 2113 millions foA.

The Preview window automatically shows the function with the new, fitted parameters:

Preview

[<] Flaating [5500.0 |
[<] Show data

[<] Show function (] Aute
[<] Fitted params []Log
[(500.0 |

19300 | auto OLeg[19200 |

The function now approximates the data

points quite well.

We can plot function (3.2) using the fitted parameters:

3. Choose Plot Function... from the

Draw menu

A dialog box appears, displaying options for plotting the function:

Getting started

3-11

Plot Function "Exp*
[+ Plot into current graph] Open new window
—X=axis Y-axis
(X1 #][lin | %] [¥1 #][lin 4][]Autorange
from | 1930 I to | 1990 from |0 to | 6000
[+ Use fitted parameters Step: |auto
=~ @ From X min to X max Line [_ -][3 IE I
" (3 From [1930 to [1990 2] [cancel |

We don't need to change any of these options.
4. Click OK to draw the curve

The curve is drawn in the graph. You can now rearrange the items in the drawing window to obtain &
representation of data and theory like this one:

The world's population since 1940

6000

N
o
o
o

2000

B population [Mio]
- — theory .

population [Mio]

0
1940 1960 1980 2000
year

Defining your own functions

In the previous session you have fitted the built-in exponential function to your data. Fine. But what do
you do if your model is described by some mathematical equation that does not appear among the bui
in functions in the Func menu?

Define your own function!
proFit can work with virtually all functions you can think of. Let us look at an example:
Imagine you want to analyze a function of the form

3-12 Getting started

y = asin(xX)xIn(x) +b (3.3)

with the parametes andb. To define this function:

Choose New Function from the File menu.

This opens a new, empty function window.
[0 = Untitled Function 1 =—=— 0 H

[(]| (o o) 3 vebug | Hetp (2) const (23| (2

Browse |4 |||||I LA E=

Enter the definition of your function in the new window.
Just enter:

a[1]*sin(x)*In(x) + a[2]
on the first line.

Click the "To Menu" button in the function window, or choose “Compile &
Add To Menu” from the Customize menu.

This translates your function into computer code.

pro Fit looks at what you wrote and sees that you used the variable x and the standard functio
parameters a[1], a[2]. It therefore assumes that you want to define a new function and interprets yot
text accordingly.

The new function is added to the Func menu, and the parameter window shows its defauls
parameters.

Your simple expression is replaced by a complete, syntactically correct function definition:

function User_Function;
begin

y ;= a[1]*sin(X)*In(x) + a[2];
end;

The first line defines the name of the function as it appears in the Func dsamuKunction is the
default proposed by pFit. You can change it to something likegSine). Then, enclosed between
begin andend, there follows the definition of the function. In the third line the function is calculated
(from the variablex and the parametea$l] anda[2]), and it is assigned:£ ”) to the variable y.

Note: An alternative way to define the same function is:

Getting started 3-13

function logSine(ampl, offset:real);
begin

y = ampl*sin(x)*In(x) + offset;
end;

In this definition, the parameters of the function are defined in the function header. The names used i
the header are then used in the function body. This is the syntax used for standard PASCAL function:
proFit uses the parameter names defined in the function header for displaying the parameters in tr
parameters window.

After adding the function to pit, you can change its parameters in the parameters window. You can
plot the function, use it for fitting, calculations, etc.

To plot it, you should first set its parameters to reasonable values, e.g. 1 and 0.5: Enter these values
the Parameter window and choose “Plot Function...” from the Draw menu. In the dialog box that come:
up, select the plotting range (e.g. the x-axis from 0 to 5). If you already have an open drawing window
you should check the option “Open New Window”, otherwise your curve will be drawn into the existing
graph.

Our sample function is not defined for x<=0. If you were to calculate it for a negatalae, an error

would occur. How—ever, the function converges to y=a[2] for x=0. You may want to expand the
definition range of the function by defining y(x) = a[2] for ak)D. This can be done easily with the
following modification.

function logSine;
begin

ifx<=0

theny := a[2]

else y := a[1]*sin(x)*In(x) + a[2];
end;

(After having modified a definition in the function window, click the "To Menu" button or choose
“Compile & Add to Menu” from the Customize menu to add it toftan its new form.)

Your function could even become much more complicated than this. You can define functions that
contain more than one statement, as well as variables and procedures. You can use most elements of
PASCAL programming language for defining functions.

As we already noted above, it is also possible to implement the same function in such a way that it use
arbitrary names for the parameters instead of the predefined array element a[1], a[2]:

function logSine(amplitude, offset: real);
begin

ifx<=0

then y := offset

else y := amplitude*sin(x)*In(x)+offset;
end;

The pro Fit package comes with more examples of function definitions. Look them up.

3-14 Getting started

Writing programs

Besides defining functions for fitting and plotting, you can also define any data-generation and
-transformation algorithms using the same syntax.

Let us have a quick look at a small program that fills the first column of a data window with the powers
of two: 2, 4, 8, 16, etc. To define this program, again open a new function window (choose New
Function from the File menu) and enter:

fori:=1to nrRows do
data[i,1] := 2 **i;
SetColumnName(1,'Powers");

Then click the To Menu button. This time b recognizes that you are defining a program, not a
function. It adds the program to the Prog menu and replaces your text with the syntactically correc
version:

program User_Program;
var icinteger;
begin
fori:=1 to nrRows do
data[i,1] := 2 ** i;
SetColumnName(1,'Powers'");
end;

Note that this program starts with the keywprdgram , and noffunction . The rest of it follows
the same syntax as a function definition, with the exception that no “parameters” are used.

To run the program, open a new data window and choose “User_Program” from the Prog menu. Th
first column of the data window will be filled with the desired values.

In this chapter, you have seen some of the most important featured=af par in-depth information
consult the following chapters of this manual.

Getting started 3-15

4

Data editing

The data window

Working with data

The data window is organized in horizontal rows and vertical columns. It can hold up to 16 millions
columns with up to 16 millions rows if enough memory is available.

resize field

home field

home field

drag field

N\

population.data ElE| info hook

Y A 1 I = =

i~ _gear pulation in rmillion E

i L .1500.00000; S00.00000: S
2 17000000] enn.0ooac:
i =l 17so.00000: Too.ooooc:
[oo 180000000 0000000
[.. = — 1gz0.00000: 100000000
E 6 ... 1240 00000 110000000
[L - 186000000 1200.00000:

[P 8| 1580000000 1400000000 K

i 19000 0000 1000 OO0O00 -

i | e

To change the size of a data window (i.e. the number of rows and columns), cliekigtgefieldin
the top left corner of the window.

To bring the first cell of the first column into view, click theme field (to the right of the resize

field).

To insert or delete empty rows or columns, click one oftltag fields and drag the mouse.

To change the width of a column, click and drag the separation line between column titles.

Dragging down thénfo hook opens an empty area at the top of the data window. In this area you can
enter general information or comments about your data:

Working with data 4-1

[0 =——populationdata =—"==FEH
The world's poulation
[Gea 1/1990)

; RS G 1 i S a
L I e ar pulation in rnillion En]uE
[1 1 500.00000 20000000 =
[2 1700.00000 0000000
L. & 1750.00000 TOo0.00000
[4 1 800.00000 20000000
[3 15820.00000 1000.00000
L.) 1 840.00000 1100.00000
[T 1 8&0.00000 1200.00000
[8 1850.00000 1400.00000
L. ':'II 1900.00000 1600.00000 - |
A [D

When editing numbers in a data window, the arrow k) move the selection mark to
neighboring data cells.

If you hold down the option key while pressi or , the insertion mark moves horizontally
within one cell.

The tab key moves the selection one column to the right. The carriage return or enter key moves th
selection to the cell below.

Selecting data

You can select gingle cellby clicking it.

» To select aectangular region of data cells, drag the mouse from the top left to the bottom right
cell, or click the top left cell and then click the bottom right cell while holding down the shift key.

» To selectall cells in a row/column click therow/column number field. To select several
rows or columns, click and drag over the row or column numbers you wish to select.

* To select all cells in a columstarting from a certain row, hold down theoption key while
clicking the topmost cell of the desired selection ,or clickctiiemn number field and then drag
the mouse down to the first row to be selected.

» To select all cells, chooselect Allfrom the Edit menu.

You can create discontinuous selection
* To extend or modify a current selection to a discontinuous selection of rows, click (and drag) into
the rows to be selected or deselected while holding doweotihenand key
* Note that a discontinuous selection can also be created by selecting datBrievibes window.
See also Chapter 6, “Preview Window”.

Data types

By default, each column of a data window contains numerical datagealevalued numbers The
precision and range of these numbers can be:

4-2 Working with data

« 10739 to 13%with approximately 12 significant digits (double precision)
. 1038 t0 108 with approximately 6 significant digits (single precision)
See Appendix B for details on numeric representations.
By default, a new data window opens with either single or double precision columns. The default type

can be selected by choosing the command “Preferences” from the File menu. In the dialog box the
comes up, click the “General” icon. See Chapter 13 for details.

A column can also contain text, up to 255 arbitrary characters in each cell. To switch between text an
number formats, first select the column or columns you want to change and then Cbhaosa

Format from the Calc menu. Alternatively, you can also double-click the column number of a column
you want to change.

After either of these actions, the Column format dialog box appears:

Column Format

Format of column 1

(3 Text Column width | default
i® Numbers
Range: Format:
@ -1e30..1e30 Decimals | auto
) =1e300 ... 1e300] Scientific

2] (Cancer] [Cox]

CheckText if you want the selected columns to contain text, ciakbers for numerical data. In the

latter case you can specify thBiange(single or double precision) and define the format for displaying
numbers: select the number of digits to be displaced after the decimal point (decimals) from the
Decimalspop-up menu. If you check trseientific option, all numbers will be shown in exponential
representation (i.e. 1.34e+3 for 1340).

You can also enter theolumn width in pixels in the corresponding edit field. A second way for
changing the width of a column is to click on the boundary line between column titles (the mouse curso
will change tc4t*) and drag it to the desired position.

Entering data

You can type data in the data window, copy and paste it , or drag it and drop it everywhere you want.

Instead of entering a number directly, you can enter a mathematical expression, e.g. “exp(1)” ol
“6+sin(1v4)”, or any predefined function or variable. See Chapter 9, “Defining functions and programs”
for more information about all the predefined keywords and functions you can use in mathematica
expressions.

Working with data 4-3

You can also import data from text files. See the Appendix C, “File Formats” for detailed information.

Data transformation

proFit offers various methods for transforming da
Numerical transformations, data reduction, sorting, trg Fit... %
posing, and Fourier transforms. In addition, you can w .

programs that edit, manage, or create data in any concei Mm_‘tE_ Carlo Fit.. %M
way (for more information on writing such programs § Optimize...

Chapter 9, “Defining functions and programs”). Params --»3 % B

All the commands for transforming Qata are fpun_d i_n the Calculate EXp{x)... #K
menu and they work on the data window which is in front Tabulate Ex T
all other windows. abulate Exp(x})...

Analyze BExp{x) 2
Algebraic transformations Data Transform... %Y
To make simple numerical transformations on your dy Data Reduction...
chooseData Transform from the Calc menu. Sort...

Transpose

The transformations you can carry out with this command o
of the formy = func(). You can define where thevalue co- Stﬂt'_ﬂ'“-"

mes from and whenghas to be stored. You can also cho Fourier Transform p
Yvhat _fun?,tlon you want to use (note that some of th Columin Format...
functions” do not need axrvalue).

Data Transformations

In/0ut: @ X:| »year +] ¥:[¢ Column 3 %
] Selected rows only
i3 Selected cells (¥ cell = X cell)

@ Simple arithmetics: Y=X| + |1

() Column arithmetics: Y:i=X [+ :][* year %
O Differential/Integral: Y= [d/idx | 4 [= year % |
i) Yarious functions : Y= [Exp({X) -]

i} Formula : Yi= |x-cl=i

2] | cancel |

The transformation is either by columns or on the current selection: Gedekted Rows onlyo
only include selected rows in the calculation. Chd®skected cellso work on the current selection.

4-4 Working with data

In

calculations on the current selection, each gglh(the selection is replaced by its transformed value

(y). In transformations by column, the cells of #ieolumn are transformed and stored in the cells of
they-column. You can select the andy-columns from the pop-up menus. (In these menus empty
columns are marked witk’, columns already containing data wi#i,'and text columns withf*).

Five different groups of transformations are available:

Simple arithmetics. All these transformations are of the tyype x opval, where op is one of the
operators +, -, * (multiplication), / (division), * (power), div (integer division), mod (modulus).
Column arithmetics: These transformations are of the typex op col. Again, op can be any of
the operators mentioned above.
Differential / Integral: These transformations return the discrete derivative or integral.
Thederivativeis calculated as the discrete derivative of a coldrirat is selected from the menu to
the right of the ‘d/dx’ popup field, in respect to theolumn. The result is stored in tigeolumn
according to the formula

= disy —d

|

Xie1 ~ X

Theintegral is calculated as the discrete integral of a coldmmer thex-column.d is again selected
from the menu to the right of thedx’ popup field. The result is stored in txeolumn according
to the formula

1o
Yi :Eg(diﬂ +di) (X1 = %)

Sometimes you may want to integrate ovemglecolumnd, or you may want to differentiate over
asinglecolumnd, according to one of the following equations:

j—1
yJ = Zdl or yi :di+1_di'
=1

You can do this by creating a column containing the numbers 1, 2, 3, ... (use the fill(n) command
described under ‘Various functions’ below) and using this column asg@iumn.

Various functions: Here you can select various simple transformation functions, such as sin(x),
exp(x), In(x), etc. Among them, you can also find the currently selected function of the Func menu,
as well as the special functions fill(0), fill(1) and fill(n), which let you fill a column with the values 0

or 1 or with ascending values 1, 2, 3,... respectively.

Formula: If you select this sort of transformation you are free to define any transformation
statement you like. Columns are labeled by the character 'c’ followed by their column number. You
can use columns, constants, mathematical functions, or calls to user-defined functions in the Fun
menu. You can use the symbolsrn for the row number and (if you have chosen “Selection
only”) j ormfor the column number.

Examples:
x+sqrt(x) an expression
tan(c10) tangent of values in column 10
CovarMatrix(i,j) the covariance matrix of the last fit

The size of such a transformation statement is limited to 255 characters.

If the result of a calculation is not defined, either because a data field used for the calculation is empty ¢
because there was an numerical error, the resulting data field is cleared.

Working with data 4-5

User programs

proFit lets you define your own data transform programs or macros. These programs can perform dat
transformations in the data window, create a graph in the drawing window, etc. They are found at th
end of the Misc menu.

Chapter 9, “Defining functions and programs” explains how to define such programs.

Data reduction

The command “Data Reduction” in the Calc menu offers several possibilities for data reduction, e.g. by
averaging over several data points or by skipping part of the points.

Data Reduction

Keep every
3 Remove every
) Average over

3 Smooth over] Selection only

{3 Keep selected rows
3 Remove selected rows

12 | Cﬂncell

e To keep every'i'i‘ row and to remove all other rows, selgeep every

« To remove every!R row and to keep all other rows, selEcrget every,

» To replace groups of n consecutive cells in a column by their average,Sedeage over This
option decreases the number of rows by a factor of n. (For example, if n=3, the values in the row:
1, 2, and 3 are averaged and the result is stored in row 1. The average of rows 4, 5, and 6 is the
stored in row 2 etc.)

* To replace every data value with the average of itself and its n-1 neighboring values in its column.
selectSmooth over Again, the average of n values is calculated. In contrast to ‘Average over’, the
number of rows is not reduced! (For example, if n=3, the value in row i is replaced by the average
over the values in rows i1, i, and i+1).

2 | data

To transform only the selected cells, ch&Hection only In this case only the currently selected
cells (highlighted in the data window) are affected.

If the selection is discontinuous (whole rows only), the above algorithms are applied to each continuou:
block of the selection, one after the other. The various discontinuous blocks are treated separately and «
not interact with each other.

To keep only the rows that are presently selected, ckeelp selected rowsTo remove all the
presently selected rows, cheRlemove selected rows

Sorting data
To sort data, choosgort... from the Calc menu:

4-6 Working with data

= Data Surti“g

Sortcolumn | year %

Order: # ascending
{ydescending

[selection only 2| | Cancel |

Use the pop-up menu to select the column to be used as a reference for sorting. You can sort t
ascending or by descending values.

All the rows in the data window will be rearranged according to the new order in the sort column. To
order only the selected part of the data window, cl@stkction only

Note that you can only sort by columns that contain numerical data. You cannot sort by columns tha
contain text.

Transposing data

The commandransposein the Calc menu exchanges the rows and columns in the active window. It
automatically resizes the data window to make sure that all the data fits into it.

Statistical analysis of a data set

The commandtatistics...in the Calc menu lets you calculate statistical data of a one-dimensional data
set.

Input:) Single column [population in millio... :]
i 3 All columns [] Selected rows only
Selected cells

Output: [Basic information
{(# data, sum, mean, variance, standard
deviation, mean absolute deviation)

[Median, Minimum, Maximum
[Skewness and Kurtosis

2] | Eﬂncell

Working with data 4-7

The data set that will be analyzed by the statistical algorithms can eith&itgle column(use the
popup menu to define itphll columns, or only theSelected CellslIf you specify a single column or
all columns, you can chedelected rows onlyto only use the data in the selected rows.

The following statistical values are calculated from a set of dataxx] and are printed to the results
window:

* The number of valid valuehll in the data set.

* The median of the sorted data set (central value folNbddaverage of the two central values for
evenN)

e The minimum (smallest value) and the maximum (largest value)

e The sum of all valid values S=Y x

N
* The mean >‘<:§:l X,
N N 1=1
« The variance Var = EESR (x - >‘<)2
N —1; %
* The standard deviation o=+Var
1 N
» The mean absolute deviation ADev = N z
N: —
e The skewness i z X
N 1 o
* The kurtosis Kurt = 0L S j
E’NZ 5o BL

The Skewnessharacterizes the degree of asymmetry of a distribution around its meaturidses
measures the relative “peakyness” or flatness of a distribution.

Fourier transforms

proFit can calculate Fourier transforms of numerical data. A Fourier transform is a transformation of
numerical data from the “time domain” into the “frequency domain”, or vice versa.

If you have a one-dimensional set of real valued data pdipt = 0 ..N-1), thediscrete Fourier
transformHnp of these points is given by
N-1 _

wheren goes from N/2 toN/2 (N is assumed to be even).The inverse Fourier transform is the inverse
operation: It allows the calculation of ddmain the time domain from datdk in the frequency domain

by

1& 21ikn/ N
4 o2rikn
NZ . @)

4-8 Working with data

Note thathk as well adHk can be complex values.
A classical interpretation of the Fourier transformation is the following:

A signalh(t) is sampled at a regular time inter)| resulting in a set of data poinkg = h(At k). The
Fourier transform of this set of data corresponds to the frequency spectrum of thekignal.
corresponds to the amplitude of the signal at frequefiiAt) .

Note that the maximum frequency of the frequency domaiig s 1/(2At), theNyquist critical
frequency

The Fourier transform and its inverse can be calculated withq FFT...

commands in the submenu Fourier Transform of the Calc rix&iu:
andInverse FFT. (“FFT” stands for “Fast Fourier Transform”, a
efficient algorithm for the calculation of the Fourier transform.)

Inverse FFI...

These built-in algorithms assume that the datajsef the time domain is real-valued and not complex.

In this case the frequency domain datatggtis complex but we havidpn = H-n* i.e. the values at
positive frequency are the complex conjugate values at negative frequency. It is therefore sufficient t
calculate only the positive frequency spectrum of the Fourier transform.

Note: The built in Fourier transform works on real valued data in the time domain. To work in
complex data, use the external module “FFT” that comes with pro Fit.

To carry out a Fourier transformation, bring the data window with your data in the time domain to the
front and chooseFT from the Fourier Transform submenu:

Fourier Transformation

Input:

Data column | »x-Value % |

Data interval Il seconds

Output: @ Real and imaginary parts
3 Amplitude and phase

Real part | Column 3 =
Imaginary part | o Column 4 % |
Frequency | + Column 5 =

[+ Calculate frequency |g| | Eancell |Dl¢:|

Select the column that contains your time domain data and the columns for the real and imaginary par
of your frequency domain data. If you check the B@tculate frequency, you must enter the time
interval between two points of the time domdafa interval) and a columnKrequency) for the
frequency values of the frequency domain data.

Working with data 4-9

Instead of calculating the real and imaginary parts in the frequency domain, you can also calculate the
absolute value and complex argument (chégkplitude and phase instead ofReal and
imaginary parts).

To calculate the inverse Fourier transform, sdieetrse FFT from the Fourier transform submenu.
The dialog box that appears for this command is very similar to the dialog box we have just seen:

Inverse Fourier Transformation

Input: #® Real and imaginary parts
iy Amplitude and phase
Real part [* x-Value 2 |
Imaginary part | s y-Value =
Data interval 1 Hz
Output:
Datacolumn | < Column 3 % |
Time | « Column 4 % |

[« Calculate time 12 | Eﬂncell |ﬂ|{|

Your input data are the complex values in the frequency domain. You select the columns for the real ar
the imaginary parts, or, alternatively (when you sefaoplitude and phaseinstead ofReal and

imaginary parts), you select the columns for the absolute value and the complex argument of your
data.

The output column contains the real valued data points of the time domain.

If you want to calculate the time range (in seconds) for your output data, Caémiate time, enter
the frequency interval between consecutive data points of the frequency domain, and select a column f
the time values.

Note that if you hav@l points in the time domain, you obtaii2+1 (complex) points in the frequency
domain and vice versa.

The FFT algorithm works only faX = 2™ (wherem is a positive integer), i.e. fod = 2, 4, 8, 16, ...
If the number of input data points is not a power of two, then the missing values to the next power o
two are assumed to be O.

For further information on the subject of discrete Fourier transformations see e.g. W.H Press et al.
Numerical RecipegCambridge University Press (Cambridge, 1989).

4-10 Working with data

Defining a data set to work on

Some of prd-it's commands access data in the data windows. If you have several data windows open &
the same time, piféit uses some rules for selecting the data window it works on:

» The transformation commands in the Calc menu work on the active data window (the window in
front of all other windows). If the active window is not a data window, these commands cannot be
used. (Example: the Data Transformation... command is only enabled when the front most window
IS a data window.)

» Some other commands use the front most of all data windows. It does not matter if windows of
other kinds are in front. If the active window is not a data window, these commands look at all the
windows behind the active window and work on the first data window they find. This will be the
data window that is closest to the front. (Example: the Spline function uses the data window that is
closest to the front.)

* The commands for curve fitting and for plotting data display dialog boxes where you can choose the
data window from a pop-up menu. (Examples: Plot Data... and Nonlinear Fit...)

The data window containing the data used in a particular operation istballedrrent data windown
this manual. The current data window is either the foremost data window or the window you have
selected yourself.

When a data window is used as the current data window by a function or by some commands, four c
its columns can have a special meaning. They arédfalt x-, y-, Ax-, and Ay-columns. You

can define these columns using the pop-up menu that appears when you click the column number of
data window while holding down the command key:

none
[l="—— X B
B E 1 * 3 -
L #ornax AN Calurnn 2 =
........... 1400000000 Ay
........... LB R, P 7. SO

For example, the ‘Spline’ function uses the data in the x- and y-columns of the foremost of all the dat:
windows (other windows of a different kind, e.g. a drawing window, can be active).

A small ‘X, 'y’, * AX’ or ‘Ay’ in the head of a column marks the default columns.

Working with data 4-11

5 Working with functions

Functions supported by pFit are of the forny=f(x) and can have one or more parameters. You can

use these functions for fitting, plotting and analysis. This chapter gives an overview of what you can dc
with functions.

proFit has a set of built-in functions, that you can use “as-is”, and gives you the possibility of defining
your own functions. To do this, you can use the built in programming language (see Chapter 9
“Defining functions and programs”), or you can write your functions in your own compiler and import
them as modules (see Chapter 10, “Working with external modules”).

A list of the currently available functions can be found in the “Func” menu.

Introduction

A function in pro Fit has the form
y = f(x a1, a2, ..an) (1)
wherex is its argument angits value.al, a2, .. an are the parameters of the function. An example is
the polynomial function, one of pro Fit’s built-in functions:
y = ag+aix+axx2+ ..
You can select the function you want to work with from the list in the Func menu. When you do this, a

short description of the function and its parameters appears in the Parameters Window. As an exampl
the polynomial function has the following parameters window:

Fl=————— Polyvnom=s=——————— H

pararmeters | | % !
deg = Z.0000000 const = 0.0000000 al =(0.0000000 azZ= 1.0000000

aF = 0.0000000

selected pararmeter
al

lower limit=[none | [Use for fitting

) = conzt + a1 ¥x +. .+ aZ %12
deq: degree of the palynomial

Parameters
In the Parameters window you can view and set the parameters of the function.

The upper part of the window lists all the parameters of the function. It also contains a popup ment
where you can save parameter sets for later use (see below). The lower left part of the window gives

short description of the function, the lower right part lists some properties of the currently selected
parameter. What you can do here:

Working with functions 5-1

editing

copy, paste

limits

fitting mode

To change a parameter, click its value field and enter the desired value. Hit the tab key or
the enter key to move to the next parameter.

You can copy and paste parameter values between the parameters window and data ¢
text windows using the Copy, Cut, and Paste commands from the Edit menu. If you

choose Copy with no parameter value selected, all parameters are copied to the
clipboard, separated by tabulators. If you choose Paste with no parameter value
selected, the text on the clipboard is assumed to contain several values separated b
spaces, tabs or carriage returns, which are then used to change all parameter values.

A parameter can have upper and lower limits, which are displayed in the lower right part
of the Parameters window. These limits are used to constrain the parameter during
fitting and function optimization. To change a limit of a parameter, select the parameter
and enter the limit in the corresponding field. To remove a limit, select the parameter and
clear its limit.

To change the fitting mode of a parameter, check or uncheck the option “Use for fitting”
in the lower right part of the window. If you check this option, the parameter will be
varied during fitting and optimization, otherwise it will be kept fixed. The fitting mode

of a parameter determines the style of its name in the Parameter window. Parameter:
with names displayed ibold face will be varied during a fit. Parameters displayed in
normal type face are kept fixed during a fit. As an alternative to using the “Use for
fitting” checkbox, simply click the name of the parameter to toggle its fitting mode.

Setting one of the parameters of a function to be equal to the value of x

You can enter the expression '=x' when changing the value of a parameter in the parameters window:

|

Polyhnom=—————— H

parameters | | % !

deg= 20000000 const=[={ | al = 0.0000000 a2 = 1.0000000
a% = 0.0000000

The selected parameter is forced to be equal to the current x-value of the function.

If you want to study the dependence of a function upon various parameters, you can define you
function as a function of parameters only, without explicitly using the variable 'x'. You then designate
the parameter treated as the x-value by entering ‘=x’ for its value in the parameters window.

If you explicitly use the variable 'x' inside a function and also define a parameter to be equal to x, bott
will have the value of x: A function like y:=a[1]*sin(x) becomes the function y:=x*sin(x) if a[1] is set to
be equal to x in the parameters window.

If you define your own function, you cannot use this feature for parameters that you use in

the proceduréirst because x is not defined in the procedise . If you set a

parameter to be equal to X, its value will be undefindolgh . (See Chapter 9,

“Defining functions and programs”, for more details.). If you plan to set a parameter equal
o to X, never use it in the functidinst

5-2 Working with functions

Using functions

The following explains what you can do with functions. It does, however, not describe how to plot or
fit functions — these topics are covered in Chapter 8, “Fitting” and Chapter 7, “Drawing”.

Calculating function values

You can calculate thg-value of the currently selected function for a givemalue by choosing
Calculate Function(x) from the Calc menu (the name of this command changes — it always uses the
name of the currently selected function):

You can calculate thg-value of the =—— Calculate Polynom{x)
currently selected function for a given

x-value by choosingCalculate

Function(x) from the Calc menu X: II]
(the name of this command changes —)
it always uses the name of the ¥ 0

currently selected function). (] Use fitted ¢
se fitted parameters

If you click OK, the function is
calculated for the givervalue, itsy- -
value is printed in the results window, Doit %D |g| [ﬂ] -

and the dialog box disappears.

If you click Do It, the function’s value is displayed in the dialog box and written to the results window.
The box does not go away and you can calculate other values of the function immediately.

If Use fitted paramsis checked, the resulting parameters of the last data fit are used for calculating,
otherwise the parameters displayed in the parameters window are used.

ChoosingTabulate Function(x)... allows you to create a table of the function’s values in a data
window. You are prompted for the first and last value of the table and its step width:

Table of Polynomi{x)

Tabulate by varying | x 2 |
Min: | 1400 Max: | 2100
Step: | 0.5 (0.5, 'auto’, 'points”®)

[]Use fitted parameters

12 | Eancell

If you enter a numerical value for Step, the function is calculated at equidistahies. If you enter
‘auto’ in the field ‘Step’, prd-it chooses th&-values at which the function is calculated by using a
special algorithm that decreases the distance between calculated points wherever the function is strong

Working with functions 5-3

bent.
To tabulate the function at the values of theolumn of the current data window, enter ‘points’ in the
field ‘Step’.

Instead of ‘auto’ or ‘points’ you can enter a single ‘a’ or ‘p’.

Optimization of functions

The comman®ptimize from the Calc menu lets you find the maximum or minimum of a function by
varying the function parameters and/or its x-value.

Optimize Polynom{x)

Find the maximum of the function
i 3 Find the minimum of the function

by varving [+ the active parameters

[X
Starting value for X = I 0

Precision of calculation [High (slow) | 3 |

[Print full description

2| | cancel | |Dl¢:|

If you checkthe active parameters the algorithm will vary all parameters that are presently marked
as active (i.e. which in the parameters window have a bold face name and “use for fitting” checked). Th
parameters are only varied within their limits, if such limits are specified.

If you checkX, the algorithm will vary the function’s x value. Otherwise the x-value is kept fixed at the
given value.

The settings undearecision affect the accuracy and speed of the calculation. If your function is slow,
you should first choose a low precision and, once you are satisfied with the results, choose a high
precision.

Print full description controls the amount of information to appear in the results window.

Note that the command “Optimize” is designed for multi-dimensional optimization. If you only want to
vary the function’s x-value but not its parameters, you should use the faster command “Extrema’
described below.

Finding roots

The Analyze submenu in the Calc menu allows you to calculate the roots, the extrema and the integra
of a function:

5-4 Working with functions

Fit... #F

Monte Carlo Fit... M
Optimize...

Params =-»> #*B

Calculate Polynom(x)... ¥K
Tabulate Polynom{x)... #T

Roots...
Data Transform... #EY BExtrema...
Data Reduction... Integral...
Sort... Tahle of Roots...
Transpose Table of Extrema...
Atatistics... Table of Integral...

T N N e e [|

Roots

The roots of a functiorfi(x) are those values of for which f(x) takes a given value, such as 0.
To calculate the roots of a function, cho&smtsfrom the Analyze submenu (menu Calc)

Roots of Polynom{x)

Between | 1400 | and | 2200

Mumber of subintervals 10

Look for f{x) = 0
2] [cancel |

Here, you can select the range within which to look for roots. This range is divided into a given number
of sub-intervals.

Example: If you look for the roofi§x) = O of a function betweex= 0 andx = 1 and specify ten sub-
intervals, prd-it looks for roots in the intervals [0, 0.1], [0.1, 0.2], etc. In each inteay#l [it checks

if the sign off(a) is opposite to the sign &fb) (or if one of these values is undefined and the other de-
fined). If this is the case, the corresponding interval is searched for a root.

Enter a valuéX in the fieldLook for f(x) = to find the roots of the equatidfx) — Y= 0. Per default,
this value is 0. For example, you can use this feature to find all x-values where a function becomes equ
to 1.0.

Table of roots

By choosing Table of Roots from the Analyze submenu, you can create a table of the roots of you
function for different values of one of the function’s parameters:

Working with functions 5-5

Table of Roots of Polynom(x)

Between | 1400 | and | 2200

Mumber of subintervals 10

Look for f{x) = 0

Tabulate by varying | const | % |

from |1 to |4

step (0.5

(2] | cancel | |DK|

The top part of the box contains the same entries as the Roots dialog box (see above). In the lower pi
of the box, you can enter the parameter you want to make the table for, its range and the step width f
tabulating.

Note that if you have more than one root for a given parameter value, only the first root will be found
and entered in the table for every value of the parameter you vary.

Finding minima and maxima

To find theextrema of a function (i.e. the x-values where f(x) becomes largest or smallest), choose

“Extrema” from the Analyze submenu (menu Calc). A dialog box similar to the one for the Roots

command appears. You enter the x-range within which extrema must be found and a number of sul
intervals. prd-it tries to find one local extremum (minimum, maximum) within each sub-interval.

To tabulate the extrema of a function (i.e. the x-values where f(x) becomes largest or smallest) for
different values of one of its parameters, you choose “Table of Extrema” from the Analyze submenu.
The dialog box displayed by this command is again the same as for the roots command (see above)

Note: If you want to find the extrema of a function by varying not only its x-value but also its parameters
(multi-dimensional optimization), use choose “Optimize” from the menu Calc. This command is
described above.

Integration

To calculate the numerical integral of a function, choose Integral from the Analyze submenu (ment
Calc). In the dialog box that appears you can enter the limits of the integral as well as the number c
iterations

5-6 Working with functions

Integral of Polynom{x)

Between | 1400 | and | 2200

Iterations {(3-13) 9

12 | Cancell

The number of iterations affects the accuracy of the results. A larger number of iterations yields a mor
accurate result but more time is needed for the calculation.

To tabulate the integrals by varying a parameter of the function or one of the integral's limits, choose
Tabulate Integral from the Analysis submenu.

The Spline function

There is one special function in the list of predefined functionsSgi@e function. You can use this
function only when you have a set of data poirisy{) in a data window (thg& column and thej

column are identified by small ‘x’ or 'y’ labels in column head. Change the default x- and y- columns by
clicking the header of a column while holding down the command key.). The Spline function is defined
as a smooth cubic Spline curve going through all your data points. The Spline function is useful for
interpolation, especially when you do not have a mathematical model for your data. This is a simple dat
set together with its Spline function.

100 | T T T T | T T T T |
[|— Spline i
sol O data points 7
(] L .
>
= B i
> C]
> 0.0F -
-5.0 i 1 1 1 1 1 1 1 1 1 1 1]
-1.0 0.0 1.0
x-Value

To use the Spline function for a given data set:
1. Choose the Spline function from the Func menu.
2. Bring its parameters window to the front and click the “Select Data” button.

A dialog box appears:

Working with functions 5-7

Spline Data

Data Window | Untitled Data 1 % |
H column [+ Column 1 % |
¥ column | ¢ Column 2 % |

|Stup|| I]HII

Use the popup menus to select the data set to be used by the Spline function.

If you do not use the “Select Data” button in the pararameters window, then the Spline
function will use the data in the frontmost data window (Select the appropriate x- and y-
column by clicking the desired column number while holding down the command key).

[If you did use the “Select Data” button, but you close the data with the data set used by
Spline, then the Spline functions reverts back to using the data set in the frontmost data

window.

5-8 Working with functions

6 The Preview Window

There are generally two different approaches that are used by plotting applications for managing grapt
and the data used to generate them:

» The first one consists in maintaining a permanent link between the data you plot and the result of th
operation (the graph). In this approach whenever you edit the data you used for creating the plot, tF
plot automatically changes to reflect the new values of the data set. Since the link between data ar
plot needs to be maintained, it is in generally not possible to save data and graphs separately, al
they must be saved in the same document. In applications using this approach, the graph is only
different “view” of the data, but does not lead an independent life.

* In the second approach, graphs and data are independent. Although a graph can be created fr
data, and data can be recovered from a graph, the two documents lead separate lifes. After it h.
been created, the graph does not know anymore about the origin of the data used to create it, anc
you modify that data, the graph remains untouched.

proFit uses the second approach. There are data documents, and there are drawing documents. From
data you can create graphs. From the graphs you can recover the data used to plot them. Drawing a
Data documents can be stored and maintained separately and don’t affect each other. In Chapter
“Drawing”, you will see how you can use the Draw menu to plot a function and a data set, obtain
graphical representations of your data and functions, and edit the graphs to obtain the precise graph st
you are looking for.

There is an ongoing discussion between the supporters of the first approach outlined above and tt
supporters of the second approach used b¥fipré link between data and its graphical representation
is in fact also useful. pféit's answer to this dilemma is thireview Window.

The preview window is a graphical representation of the current function and/or the current data set. |
gives you a graphical “view” of the function and the data set. Any change in the data set or in the
function is reflected in the preview window. You can even use the preview windgaghbically edit

the function parameters or the data set.

Use the preview window to have a “quick look” at a function or a data set without actually plotting it.
For instance, you can let the Preview Window be a floating window and keep it in front while you load
many different data files. The preview window will automatically display all data contained in the current
x- and y- columns of the front window.

You can also use the preview window to view functions, graphically edit function parameters, select ¢
range of data points, compare a function to a data set, etc.

Preview Window 6-1

ChoosePreview from the Windows menu to see s Preview Window. This is how the Preview
Window looks like when it has its smallest size and is working as a floating window.

O onnnnnnnnnnnnnmn Preview stonnnnnannannannn: BB
g Flaating 1.2000 “(selector tool
Show data
marker rag tool
[<] Show function [] Auto & ,iﬂ‘?(drag too
[JFitted params - '::{(zoom tool
T
L :%(fitting tool
[-0.z000 | . g
~1 0000 | [#uto [Conoo | |1~ l€t— marker tool
i-}
% = _D'?Hak y = 04223 |;|

\ marker's coordinates

On the left side of the Preview Window there are some check boxes that determine how the windov
behaves and what it shows. The main part of the window is a rectangular viewport that shows :
graphical representation of the current function and data set. On the right of the window there is a toc
palette with tools for changing the coordinates displayed by the viewport, for graphically editing the
function and the data set, and for determining precise x- and y- coordinates.

CheckFloating to make the preview window a “floating window” which always stays in front of all
document windows. Uncheck this option to transform it into a normal window, which you can be
hidden by other windows.

Check or uncheciShow dataandShow function to choose what is shown in the window. When
Show data is checked, the window displays the current datastte x- and y- columns of the current
data window. You can select the data set to be shown in the preview window by clickidgtéhe
button or by directly setting x- and y- columns in the data window

The Fitted params check box appears whenever a fit was successful, to give you the option of seeing
a plot of the function using the parameters obtained in the last fit, instead of seeing the function with th
parameters shown in the Parameters window.

Click theRedraw button if you want to let priit redraw the complete function at maximum resolution.
proFit automatically decreases the resolution at which it draws the function if it notices that the function
is too slow. You can override this by clicking the Redraw button.

TheUndo button appears only when the Preview Window is floating, and it allows you to undo the last
operation. When the Preview Window is not floating, you can undo the last operation as usual, by
choosing Undo from the Edit menu.

At the right end of the title bar there ig@om box Click it if you want to work with a larger window.

At the edges of the rectangular viewport that displays the function and the data set are four edit-field
giving the coordinate range to be displayed. You can edit the values to change the x- or y- range
Between these edit-items there are check boxes lalaeitrlandlog. Check them to let preit
automatically recalculate the ranges based on the ranges of current function and data set, or to u
logarithmic scaling.

There is gpermanent link between the preview window and the data or function it displays. The
preview window always displays an up-to-date representation of the current function and data se

6-2 Preview Window

Change a coordinate in the data window, or add a data point, and the corresponding point wil
automatically appear in the preview window. Change a function parameter and the representation of tf
function in the preview window will be updated automatically. Modify a function definition and add it to
the menu once again, and the preview window will automatically display the new function.

If you select data points in the preview window, the corresponding rows are selected in the dat:
window. If you select some rows in the data window, the corresponding selection is shown in the
preview window. There is even the possibility of clicking and dragging data points in the preview
window. Doing so changes their coordinates in the data window.

Preview Window Tools

To the right of the preview window there is a palette of five different tools. You can use "3-'-?1
to select data points and change their coordinates graphically, to change the ranges'::{the
preview window viewport, to graphically change the value of the function parameters, a_%uo

set coordinate markers

Selecting data points with the arrow tool

Use thearrow tool to select data points. Simply click a data point to select it. Click and drag to
select a range of points with a selection rectangle. Hold down the shift key to add points to the
current selection, or to remove points from the current selection. If you hold dogmftheey
while dragging a selection rectangle, the selection state of the data points contained in the
rectangle toggles between selected and not-selected. Hold down both shiftiandkeys to
always add the points inside the selection rectangle to the current selection.

You can set theolor of the data points and the color used to mark selected data points using the
Preferences...command in the File menu. If you have a monochrome monitoFiprall use a
dithered pattern to mark the selected points.

Whenever you select a data point in the preview window, the corresponding row is selected in the dat
window. If you then choose Data Transform... from the Calc menu, you can perform calculations on the
data in the selected rows only.

Selecting a data point in the preview window always selectshibkcorresponding row

in the data window. If you select a range of data points in the preview and then delete
them, you will delete all data in the selected rows and not only in the current x- and y-
columns

Changing the ranges of the preview

You can change the ranges of the preview either by editing them manually, or by usirag tteel or

the zoom tool

@rr? Click in the viewport area with the drag tool and drag the area of the data set or function curve
displayed by the preview. The ranges of the preview will change accordingly. You start

dragging inside the viewport, but you can go on dragging also outside, thus changing the

coordinates by a large amount.

Preview Window 6-3

q Click in the viewport area with theoom tool (the lens) to zoom in and magnify the clicked
area. Hold down theption key while clicking to zoom out.

If you hold down theeommand key you can click and drag with the zoom tool, thus selecting the
precise area that will be displayed in the viewport after zooming.

Dragging the function curve

:42 Select thditting tool and click in the viewport. Hold down the mouse button while you move
the mouse. The curve of the function follows the position of the mouse while the selected
function parameter is adjusted accordingly.

When using the fitting tool, you must specify which parameter you want to vary. You can do this either
by clicking it in the parameter window, or by choosing its name from the small popup menu that appear:
below the tools palette in the preview window. You can only vary one parameter at a time.

When you select the fitting tool and click into the preview, the selected parameter is varied until the
function curve goes through the point indicated by the mousé&itmtoes this by numerically solving

the functionf(a,x)=y, wherea is the selected parameter amg/) is the point indicated by the fitting

tool. If it is mathematically not possible for the function to go through that point, no matter what the
value of the selected parameter is, then you will not be able to drag the function curve to that point. Th
same applies if prdit fails to find numerically the correct value for the parameter.

If you use the fitting tool with a slow function, g¥d will automatically reduce the resolution with
which the function is drawn, so the function will not appear to be smooth anymore. The resolution will
be increased again once you are finished dragging. Click the Redraw button to achieve the maximur
resolution.

Inspecting and editing coordinates

-*-| The last tool in the tools palette can be used to maocedinate markerson a given data
point, or on the function curve. Select the marker tool and click the curve or a data point.
proFit creates a new marker at the indicated position

While you move the marker tool around inside the viewport of the drawing window, the corresponding
coordinates are displayed in the bottom left corner of the preview window.

When you create a new marker, it becomesttiwe marker. The active marker is always flashing on
and off.

You can create any number of markers. The first marker you create isfétence marker.
Subsequently created markers are auxiliary markers and are numbered starting from 1. Their numb
appears when they are active (when they are flashing).

To set the color of the reference marker and of the auxiliary markers, choose Preferences... from the Fi
menu. If the reference marker cannot be distinguished by its coldiit prdomatically draws it larger.

Marker coordinates are displayed in the bottom left corner of the preview window. If there is more than
one marker, there can be two other coordinates displayed to the right of the marker coordinates. The
correspond to the distance between the reference marker and one of the other markers.

6-4 Preview Window

What the coordinates mean:

X,y are the coordinates of AX, Ax are the
distances from

No active markers around the reference marker the other marker
(if there is only one)

One active marker the active marker the reference marker

If a marker is active, its coordinates are displayeelditable fields. Edit any of these fields to set the
coordinate of the marker.

If the marker is a data marker and the preview window is big, the data window row number that
corresponds to the marked data point is also displayed. It is found above the x-coordinates and is label

The behavior when changing the text in the edit fields containing the marked coordinates
varies depending if the marker is on a data point or if it is on a function curve.

« If the marker is on a data point, the coordinates displayed in the edit field correspond to the
coordinates of that data point in the data window. Editing them changes the values in the dat:
window.

« If the marker is on a function curve, editing the coordinates sets the position of the marker. If you
edit the y-coordinates, pFat numerically inverts the function to find the corresponding x-value.
You can use this feature also as a shortcut to calculate the inverse of a function, or its root.

Coordinate markers can be accessed fromFgrgrograms using the predefined functions
GetMarkedX , GetMarkedY , andGetMarkedCoords

Managing coordinate markers

We already saw above how to create markers and look at their coordinates. There are a few other simg
operations that can be applied to markers.

» Click a marker to make it active.

 Click a marker while holding down the option key to transform it into the reference marker

» Hit the delete key (backspace) while a marker is active to delete it.

* Click and drag a marker to move it to a new position.

* Move a function marker to the right or left border of the viewport to delete it.

To move a marker, click and drag it, or use the left and right arrow keys. A data marker jumps to the
next point to its left or its right, a function marker will move along the function curv€itprakes sure

that you don’t move a marker outside the ranges of the viewport. You can override this by holding dowr
the option key while moving the marker with the arrow keys.

When you have markers on the function and you uncheck the show function checkbox, all of them ar
deleted. The same applies to markers on data points when you uncheck the show data checkbox.

Preview Window 6-5

Uncheck and check the show function and/or show data checkboxes if you have many markers arour
and want to get rid of all of them in one rapid move.

Data markers store their position as the number of the data point they mark. If you have data markel
around and you delete or add points to the data set, the data markers might move to a new data point
no new point corresponding to the old index is found for a given marker, that data marker is destroyed.

If you have function markers and you change the ranges of the display in such a way that their x
coordinates are not visible anymore, those markers are destroyed.

Tips and tricks

Using the preview window during a fit

If Show function is checked during a fit, the function is redrawn from time to time to show how it
changes during the fit. This lets you monitor how well the fit converges. However, drawing the function
takes time. You should close the preview window or uncheck Show Function to obtain the fastes
fitting.

The same thing happens when you use the Error Analysis feature. To perform error anallygis, pro
generates random sets of synthetic data points and fits the function to it. If Show Function is checked i
the preview window, you will see how the function curve varies in correspondence to the fitted
parameters.

See Chapter 8, “Fitting”, for more details on the fitting process and the Error Analysis algorithm.

Choosing initial values of function parameters

You can display the data you want to fit together with the fit-function in the preview window. You can
then use the fitting-tool to drag the function in such a way that it follows the data points as closely ac
possible. Try using the fitting-tool with the various parameters you want to fit.

This is a kind of “hand fitting” that can be a very useful and fast way to set up a reasonable set o
starting parameters for a fit.

For special applications, you can also mark certain features of your data set using coordinate marke
and write a small program which reads the coordinates of these markers and uses them to calculate 1
optimal initial values for the parameters of the current function.

6-6 Preview Window

7 Drawing and Plotting

Drawing and plotting takes place indaawing window This window supports most features of

commonly used drawing applications.
We will first describe the drawing window and its general features.

The section “Drawing” discusses standard drawing objects and editing techniques.

The section “Plotting” is devoted to the plotting commands used to produce graphical representations c

your data and functions. It discusses how to manage graphs and how to edit them.

The drawing window

A drawing window always contains one single page. You can select its size and orientation by choosin
Page Setup... from the File menu. Before choosing Page Setup, make sure that you have selectet
printer in theChooseror, if you are running QuickDraw GX, that you have selected your preferred

desktop printer in the Finder.

A dotted rectangle frames tipeintable areaof the page. Objects that lie outside this rectangle do not

print. See your printer’s manual for more information on printers and paper sizes.

You can view the page in a drawing window using various zoom factors, which you can set using &

popup menu in the drawing window tools palette.

Drawing tools

pro Fit provides various tools for editing drawings. These tools are collected in a “
box”, which is either placed in the left margin of a drawing window or in a separ
floating window.

To place the tools in a separate drawing window, choose “Drawing Tools” from
Windows menu. The floating tools palette appears. To move the tools back tg
drawing window, simply close the floating window.

If you will never want to have drawing tools inside the drawing windows, you g
disable this option: Choose “Preferences” from the Files menu and check “Always
floating toolbox” in the “Drawing” panel.

The upper part of the tools palette contains tools that are used to select, move or
simple objects, such as rectangles and text. Then there is a tool that can be used
up a color and apply it to another graphic object and a tool that lets you draw
individual data points such as those used in graphs. The rest of the tools palette cg
popup menus for setting line styles and fill patterns, and for choosing the zooming f3
of the current view in the drawing window. The drawing window can be viewed at zg
factors from 25% to 400%. To learn more about these tools, refer to the seq

“Drawing” later in this chapter.

Drawing and Plotting

7-1

Coordinates, accuracy and drawing info

proFit uses floating point numbers to store the size and position of the various drawing objects. This
provides a positioning precision that is much more accurate than any output device (printer or monitor)
This is important because all drawing objects can also be created by a user-program. If you write

program that produces graphical output, then you are likely to need a high precision coordinate systen
proFit gives you just this. Any drawing that you generate from a program is produced at very high
resolution and it will give optimal results when printed on any output device or when exported to other
applications as a picture or a QuickDraw GX shape. The precise coordinates of any drawing objects ce
also be viewed after it has been created using théitpbwawing Info window, which will be described

later in this chapter.

Although all coordinates are precise floating point numbers, apparent accuracy will obviously suffer
when drawing on a low resolution device, such as a normal monitor. In order to represent your drawin
at a certain resolution, determined by the zoom popup menkit pnast round the floating point coor-
dinates describing a drawing object.

When you draw something at a low resolution, Fitomust figure out reasonable floating point
coordinates. It does this by “extrapolating” from the low resolution appearance in such a way that a higt
resolution view would give the same symmetry. For example, at the 100% view you can draw three
overlapping lines with thicknesses of 0.25, 0.5 and 1.0 pts. All three lines have exactly the same
appearance (e.g. they appear 1 pt thick)Frsets up the floating point coordinates of the lines in such

a way that the thinner lines arenteredon the 1 pt thick line.

Thanks to this interpretation you get the same result, at 100% view, if you draw a 1 pt line and ther
make it 0.25 pt thick, or if you draw a 0.25 thick line directly. On the other hand, if you draw a 0.25 pt
thick line at 400% view, go to 100% view, and draw another 0.25 pt thick line on top of it, the two lines
will not overlap. This is because the first line was positioned with a much larger precision than the first
line. Use theAlign submenu in the Draw menu to make sure that such lines really overlap, or look at
their coordinates using the Drawing Info window (see later).

Likewise, if you have two graphs or rectangles, set their size to be exactly equal, and overlap them :
100% view, one of their borders might be off by one pixel if thegitionis not exactly the same. This

is because roundoff errors must occur when calculating their rounded coordinates at 100% view. If you
set their position to be exactly equal (using the Align command or using the Drawing Info window), the
roundoff errors are exactly the same for the two objects, and they do overlap exactly in the 100% view
too.

If you are concerned with precise positioning, e.g. when drawing overlapping lines or placing arrows
on the axes of a graph, always go to a larger zoom factpA00%) or have a look at the underlying
floating point coordinates. You can do this usingfits Drawing Info window.

Choose “Coords” from the Windows menu to see this floating window.

7-2 Drawing and Plotting

Whenever a single drawing shape is selected, the Drawing Info window

shows its floating point coordinates, i.e. its size and its positiofFg = coords . . B
coordinates that make sense for the particular shape which is curif 7o,]
selected. [Fzez |[F255 |
The first row of the Drawing Info window gives the absolute coordinate|| width/Height
the paper, the second row gives the dimensions of the selected shay| [4.092 | [0.523% |
the third row gives the angle of its diagonal and its length. The last|| angie/Diagonal
shows the current coordinates of the mouse. The units used to displi{[7z7 | [a.125 |
coordinates can be chosen using the “Preferences...” command.

Mouse [JLenz
All the coordinate fields areditable. Simply click a coordinate and enter|[4 z55 10 0=s
different number to change the size or the position of the selected shap

example, you can set the precise length and orientation of a line by entering
the corresponding coordinates in the edit fields in the third row.

The Lens check box lets you open a small viewport with an enlarged ve
of the region around the mouse.

—

A drawing contains differertdbjects There are four different classes of objects in a drawing window:
Objects that are created by choositigt Function or Plot Data from the Draw menu, such as a
graph and its associated legend.

Objects that are created using the tools in the upper part tddlsepalette such as texts, lines
and rectangles.

Objects that were created in another application and that are imported as picturdsittdypro
choosingPasteor Subscribe Toin theEdit Menu (or by dropping them in a drawing window).
Publishers created b@reate Publisherin the Edit menu. Everything within a Publisher’'s
rectangle is part of the picture that is made available to other applications.

:_E__-"

Drawing objects

The first class of this list (graphs and legends) is discussed in the section “Plotting”. The other classe
(objects created by using the tools palette, imported pictures, Publishers and Subscribers) are discuss
in the following section.

Drawing

This section describes the general drawing commands and the use of the tools palette.

General drawing commands

General drawing commands apply to all types of drawing objects. These commands are probabl
already known to you if you ever used any drawing application.

Here we shortly review them one by one.

Drawing and Plotting 7-3

To selectan object in the drawing window:

1. Choose the arrow tool in the tools palette by clicking the box containing
the arrow symbol.

2. Click the object you want to select.

A selected object has four small black rectangietettion handldsat the corners of its™ /\/'
enclosing rectangle. - -

To selecmultiple objects, you can either click on the desired objects while holding down the shift key,
or you click into an empty part and drag the mouse to generate a dotted selection rectangle: every obje
enclosed by the rectangle will be selected. Click on an object while holding down the shift key to
deselect it.

To move an object:
1. Click the object and hold down the mouse button.

2. Drag.

If you hold down theshift key while dragging, movement is constrained to horizontal or vertical
directions. If you hold down theommand key while dragging, movement is constrained to diagonal
(45°) directions.

In MacOS 7.5 and later, or if you have the Drag and Drop extension installed, you have a few more
options available:

- If you hold down theoption key while dragging, the object duplicated, i.e. a copy of the
original is created at the destination instead of simply moving the original.

- You can drag one object from one drawing window to another. If you do ttogpyaof the object
IS created in the destination window.

- You can drag objects to any other application (supporting drag and drop), or to the Finder’s desktor;
In the latter case the Finder will produce a small picture clipping, which you will be able to use later
on, either by dragging it back to a [fib window, or by using it in another application.

- You can drag objects into the Trash to delete them.

To change the sizdresize) of an object:

1. Select the object.

2. Click into one of the four black selection handles at its corners and drag.
While dragging, the new outline of the object is shown.

If you hold down theshift key when resizing, thproportions of the object are maintained, or the
height or width remains constant. If you hold down ap&on key when resizing, the horizontal and
vertical dimensions of the object become equal. If the object is a group of different objects, hold dowr
the command key to tell prd-it to resize all of the objects of the group, regardless of their type
(normally praFit would not automatically resize texts or data points).

Torotate an object:
1. Select the object.

2. Choose the desired rotation from the Rotate submenu in the Draw menu.

Obijects can be rotated by angles multiple of 90°

7-4 Drawing and Plotting

Toflip an object, i.e. to exchange its left and right sides or its top and bottom:
1. Select the objects to be flipped.

2. Choose the desired operation from the Flip submenu in the Draw menu.

“Flip Horizontal” exchanges the left and right side of the objects. “Flip Vertical” turns it upside
down.

Note that you can only flip lines and polygons. It is not possible to flip graphs, legends, imported
pictures, or text. (Flip has no effect on rectangles and ovals).

To change the orderin which several objects overlap:
1. Select the appropriate objects.

2. Choose the desired operation from the Send submenu in the Draw menu.

You can move objects one position forward or backward (commands “Forward” and “Backward”)
or you can bring them to the front or to the back of all other objects in the window (“To Front”, “To
Back”).

To align objects:
1. Select the objects to be aligned.

2. Choose the desired operation from the Align submenu.

Using this menu, you can align objects to each other, or distribute them regularly. If the objects are
group of text objects, then every object retains its alignment when you edit it.

To group objects:
1. Select all objects to be grouped.

2. Choose Group from the Draw menu.

Objects that can be double-clicked to change treemtéxt objects, a graph, or its legend), can also be
double-clicked and changed while they are part of a group. You don’t have to ungroup them. If the
objects are text objects and you aligned them with the Align command before grouping them, their
alignment will be maintained when they are edited.

Choose Ungroup from the Draw menu to ungroup a group.

If you resize a group containing text objects or data point symbols, the proportions and
size of the text and data points remain the same. If you want to resize them proportionally
with the group, hold down thedmmandkey while resizing the group

Objects created with the tools palette

The upper part of the tools palette contains the drawing tools needed to create somuE

more simple drawing objects.]~

The lower part contains pop-up menus to select background patterns, line widthJI »
dashing, and arrows. Their use is explained in the section “Editing drawing objects”. ﬁ?‘
*

Drawing and Plotting 7-5

Text objects

m Use the text tool to create text objects:
1. Select the text tool from the tools palette.
2. Click inside the drawing window.

The text dialog box appears:

Text Settings

ey

Elechric field gradisnt Eij [Wm3] 4
=

| Helvetica 2] 12 m%

[+ Plain

[1Bold #B | Subscript

] Italic #1

[JUnderline | Superscript

] Outline

[] Shadow | Normal

[[] Condense

Here you can enter your text and specify font, font size, text styles and the vertical position of eact
character. pr&it uses the command key equivalents “H”, "T”, and "S” for the fonts Helvetica, Times,
and Symbol, respectively.

The Superscript andSubscript buttons (keyboard equivale and switch to superscript or
subscript characters with smaller font size. Nogmal button (keyboard equivalent: command key —
space bar) restores the vertical position and the font size to their previous settings.

To set the vertical position of the selected characters, click and drédggbne indicator (black
triangle at the right side of the text box). To shift the vertical position, click the white triangles above and
below the baseline indicator. Clicking the white triangle above (below) moves the selected text up
(down) by three points. If you hold down the option key while clicking the triangle, the offset is only
one point.

Thesizeof the selected text can be set by changing the font size in the size field or to use the pop-u
menu to its right. To increase or decrease the size of all selected text proportionally, click one of the
triangles at the right of the size pop-up menu. Doing so increases or decreases the text size |

7-6 Drawing and Plotting

approximately 10 — 20 %. To increase or decrease it by just one point, hold down the option key while
clicking the triangles.

Each text object contains only a single line of text, for multiple lines you must create a text object for
each new line.

Hint: To write a text having several lines in a drawing window, edit the text in a function window or in
the results window. Then copy or drag and drop it into the drawing window — each line is converted to &
text object. If your original text contains tabulators, pro Fit will use them as column delimiters to order
the text in a table. Ungroup the resulting text group if you want to edit the position of the columns.

You can set thgustification of a text object (right justified, left justified or centered) by using the align
commands in the Draw menu (left, right, center horizontally). The default justification is centered.

If you have several lines of text objects (use distribute in the align menu to make equidistant lines), you
can set the justification of these texts and then group them. They will preserve their justification wher
the group is resized or the texts are changed within the group by double-clicking them.

If your text object is part of a group object, it is not resized when the group is resized. If
you want to resize the text objects within a group, you must hold down the command key
while resizing the group.

Kerning and ligaturesTypesetters often use a special technique called kerning to make text appear more
regular. During kerning, letters with a lot of white space between them (such as a ‘o’ following a ‘T’),
are moved closer to each other. Furthermore, some characters will be transferred into a single charac
when following each other (fl will e. g. be turned into fl):

Trifle Trifle

Text without kerning and ligatures (left) and with (right)

When you have QuickDraw GX installed, you can use kerning when printing and exporting graphics:
for this, you must check “Use QuickDraw GX” in the Drawing/General command of the Preferences
submenu (and enable the export of QuickDraw GX shapes in the PICT Options panel of the Preferenc:
submenu). For more details see Chapter 12, “Printing”.

Rectangles and ellipses

- Rectangles and ellipses are created using the corresponding tools of the palette. Select the
Hr-’ appropriate tool, click the desired position of one corner of the rectangle (or the enclosing

rectangle for an ellipse) and then drag the mouse to the opposite corner.

Lines and polygons

Crating lines and polygons is easy as well. Select the appropriate tool, click the start of the line and dra
to its end. For polygons, click at the positions corresponding to the corner points of the polygon (releas
the mouse when moving from one point to the next). Double click when finished.

Drawing and Plotting 7-7

ou can change the tool to the one for closed polygons
= '\t i y g polyg

Hold down the shift key to constrain lines (or polygon sections) to horizontal, vertical, or diagonal
directions.

When drawing a polygon, hold down the command key and double-click to create a corner that remain
a corner even when the polygon is smoothed.

Lines and polygons can hawerows. To define at which ends of the line (polygon) arrows must be
drawn and to select the type and size of the arrow(s), use the arrow pop-up menu in the tools palette.

DE By holding down the mouse button for a while when you select the polygon tool,

To smooth polygons:
1. Select the polygon you want to smooth.

2. Choose the appropriate smoothing method in the Smooth submenu in the
Draw menu.

The two possibilities for smoothing can be seen in the figure below. You can
either select a standard Bézier curve that does not touch the corners of the
polygon, or you can select a smoothed curve that goes through all the corners
of the polygon.

A

An unsmoothed polygon and its two smoothed versions.

‘?:-.zzﬁ

To reshapepolygons:
1. Select the polygon you want to reshape.

2. Make sure it is in reshape mode.

If the selection marks of a polygon appear at the corners m L]
of its enclosing rectangle, the polygon is not in reshap

mode. If the selection marks appear at its corners it g'in

reshape mode: . .

3. If the polygon is not in reshape mode, choose Reshape from the Draw
menu, double-click it, or type the Enter key

This puts the polygon into reshape mode.

To move one of the corner points of a polygon, click and drag ittéfhoove one of the corner points,
click it while holding down the option key. Taxdd a corner point, click a line of the polygon while
holding down the option key. Note that you can only add points to unsmoothed polygons.

7-8 Drawing and Plotting

Points

When plotting data, the data points are represented by special symbols. You can create such pl
symbols manually anywhere in a drawing window. This is useful for creating your own legends or for
exporting single point symbols to other applicatiang.for figure captions).

Since the point symbols can assume a quite large size, they can also be used as parts of stand
drawings. Data point symbols can be edited using a particular set of tools that let you achieve effects ni
easily achieved with other drawing objects (below you will find more details about editing data point
symbols).

To create a point object:

1. Choose the point tool from the tools palette. EEERE L
: : R L
Keep the mouse button down for a little while to select the sym| |, . 4 &
that you want to use. A pop-up menu with a choice of data poj _ S
appears. Its top part contains a set of standard, predefined [.« oDOQ
symbols. The last line contains user-defined symbols, and TTYY
Other... field lets you define new point symbols. "ee @YY
e 0 O D@ ® 4O
or gy = [
Other...
2. Click the desired position within the drawing.
A new point symbol drawing object is created.
1. Choose the point tool from the tools palette. . <>
To change the plot symbol of a point object, select it and choose the desikgd A
symbol from the point style pop-up menu in the tools palette (or double-click it to
go directly to the custom points dialog box). A
If the selected object is a graph or a legend, the new point style is applied to e v
data plots contained in the graph. See the section ‘Graphs and legends’, latqgin \V4
this chapter, for details.
P 0 =
| _ | | O,
On the right you see a selection of the data point styles offered Bit.p@hoose
Other... from the point style menu to create your own data point symbols us@ o
the “Custom Points” dialog box: Q =

Drawing and Plotting 7-9

Custom Points

— Background 400% @ & |view:

4w Size | 34
OCAVIEY] 4 pee

Fill Symm.

[+ Frame Mirror [Y []H

— Foreground

T[] Size|205
G{}&?ﬁz‘%’ ZPts | 2 | =~

il symm.

[+ Frame Mirror Y [H

:

Point line thickness | 0.25 %

[Copy to Menu...l 2 |Eance|| | 0K I

proFit defines a data point symbol as a background shape and a foreground shape. With this dialog bo
you can design both of them. @b offers some predefined simple shapes, and lets you edit any closed
polygon to define a new data point symbol. In the above example, both foreground and backgroun:
shapes are defined using a closed polygon. You can use this dialog box simply to change the size of
existing point symbol, or to design more complicated point symbols.

Draw the foreground and background shapes in the preview area at the right of the dialog box. Use tf
popup menu above it to set the magnification of the preview. The center of the preview area defines th
“hot spot” of the data point symbol. When plotting, the “hot spots” of data point symbols are positioned
on the correct mathematical coordinate.

Draw a closed polygon by dragging the polygon handles (the little circles or squares at the edges of tt
polygon). To make your work easier, v lets you define a rotational symmetry and mirror
symmetries. Choosing 5 from tisymmetry popup menu (like in the above example) tellskptdo

draw the definition points at 5 positions 360/5 degree apart before connecting them with lines#Use the
Pts popup menu to set the number of definition points. Checkinl thiev check boxes tells pfeit to

draw the definition points at the 2 positions obtained by mirroring them at a horizontal or vertical axis,
respectively. You can achieve quite astonishing effects by combining these symmetry settings and usir
only one or two definition points.

Hold down the shift key while dragging a polygon handle to constrain the dragging along radial
directions. Hold down the command key while dragging a polygon handle to resize and rotate the whol
polygon in one single move.

Choose a Symmetry of “1” and no mirror symmetries to draw a polygon free-hand.

7-10 Drawing and Plotting

Note that if you do this you can draw a polygon that is not centered inside the preview
area. This means that if you use such symbols for plotting, the symbols will not be
centered on the mathematical coordinates of the data points.

Click theCopy to Menu... button to add the point symbol you just defined to the point symbols menu
for later use.

The data point symbols you define are normally used when plotting (see the section “Plotting”, below,
for more details on this). However, you might also want to use them to achieve some special effect in .
drawing. For example, you can use a triangle or a rectangle to define a point, and you can rotate them
any amount. You can't do this that easily using the standard drawing tools. You can also define close
polygons with any special symmetry. The data point symbols you define can then be used as drawin
objects in the drawing window (their size can be quite big). You will be able to resize them as usual by
dragging a selection handle, and you can always modify them by double clicking them.

Editing drawing objects

You can change many attributes of drawing objects, such as color, line thickn
background pattern. To do this, first select the desired object(s). Then chan
attributes using theill, Pen, Dash, andArrow popup menus.

A fill pattern and a fill color can be specified for all drawing objects, except simple |
See Chapter 10, “Printing” for a list of limitations on patterns when printing
PostScript.

A line color can be specified for all drawing objects except imported pictures.

The twoPen popup menus are used to select a thickness and a line color. Thq
pattern of a line is selected using thash popup menu. Choose Other... from th
menu to design your own dash pattern and add it to the Dash menu. | e

The line thickness and dash pattern can be specified for all objects containing li
the selected object is a graph, the line styles of the axes, ticks, grid, and frame
changed. The color also applies to the labels. (More complex options are availal
the graph. See section ‘Graphs and legends’ in this chapter.)

If the selected object is a legend, you can change the appearance of the curves | -------
sets displayed in the legend and the corresponding graph. See the section ‘Gra| -------
legends’, later in this chapter, for details. | -—-—--

Drawing and Plotting 7-11

Arrows of various size and shape can be added to polygons and lines using the Arrows pop-up menu.

[l

—_—

—

—=
[
[

vy

Other...

Arrows can be added to all lines and polygons, smoothed as well as unsmoothed.

Choose Other... from the Arrows menu to design your own arrows and add your personal arrow style
to the Arrow menu.

Custom Arrows

Tvpe: Edit arrow at line end start Arrow size:

[Equal arrows at both ends

>~

slslsls] Yols
Yoovyv |

=

o
1

M White

[Cap
[+ Half-sided: @& Left () Right

[Copy to Menu... I |Eam:e|| | OK I

You can define a different arrow to be used for the start and the end of a line, use half-sided arrows
define various other types of line caps, etc.

Fill colors and line colors are set using the corresponding popup menus.
To copy thdine color from one object to another

1. Click the color measuring tool ()in the tool palette.

2 Click the color you want to copy to pick it up.
The shape of the cursor changes and becomes a paint bucket.

3 Click the drawing object to which you want to transfer the color.

7-12 Drawing and Plotting

The line color of the clicked shape takes the color you picked with the color measuring tool.

To picked up dill color for the target shape, instead of a line color, hold
down the shift key while clicking with the color measuring tool.

proFit stores the color that was measured with the color measuring tool insic o.s;ﬂ" _
standard color popup menu. This opens up an other, even more fle White
possibility to copy colors.

Other... |F:-

1. Click the color you want to copy with the color measuring tool.

2. Select an object and apply the measured color using the standard Fill-
or Line-color popup menus.

On black and white monitors plrit displays a simpler version of the color menus, with a more limited
choice of color. To see the standard color menu which is displayed on color monitors, hold down the
option key while clicking the popup menu symbol.

Exporting pictures
There are five ways to export g drawings:

e saving the whole drawing as a PICT file,

using the Copy or Cut commands in the edit menu,

» dragging them and dropping them to their destination,
choosing Create Publisher from the Edit menu,

* saving the whole drawing as an EPS file.

In the first four cases the drawing is converted to a picture (a data structure in the so called PICT-forma
or a QuickDraw GX shape. A picture can be imported into most other Macintosh applications.

Use thePreferences..command, in the File menu to set various options that determine which kind of
picture is created. The original definition of the QuickDraw PICT format defined only pictures with the
resolution of the original Macintosh screen, i.e. 72 dots per inch. To print a picture on a printer with
higher resolution, additional data must be included in the picture. There are several ways of doing this
and the choice of method depends on the printer you are using and the application you are working witt
See Chapter 12, “Printing”, for more details on this subject.

Saving a drawing as a PICT or EPS file

To save a drawing as a picture to be exported to other programs Sax@sasrom the File menu
and click the radio buttoRICT in the dialog box that appears. The current PICT Options will be used
for creating the picture. PICT Options are discussed in Chapter 12, “Printing”.

To save a drawing as &ncapsulatedPosEcript File, choos&ave Asfrom the File menu and click
the radio buttorEPS filein the Save As dialog box.

The size of EPS files created in this way is kept as small as possible. This small size is useful when yc
want to transmit your pictures over e-mail to a publisher. However, keeping a small size introduces
some limitations on the number of text formatting options you can use. If a certain text-formatting option
is not supported by the PostScript font you plan to use, like “Outline” or “Shadow”, or “Underline”,
then these text formats are ignored when storing your document as an EPS file. Typographica
formatting styles like Bold Face or Italic are nearly always available in all common PostScript fonts.

Drawing and Plotting 7-13

There is another point involved in keeping the size of EPS files small, and it is again connected to fonts
proFit does include information on the fonts used in your document, but does not include the fonts
themselves. So make sure that you use fonts that are available to the application to whidhtte® $ro

files are imported.

An alternative way to generate an EPS file is to choose Print... from the File menu and select “File” a:
destination. If you do this, the created EPS file will be much larger, but it includes the whole definition
of the fonts you use in your drawing.

A proFit EPS file contains a PostScript representation of the drawing for printing, and a picture to
display on screen (called ttkemplatg. The format of the picture template that is included in EPS files
can be selected using the PICT options panel of the Preferences dialog box (File menu). All PICT
options can be used except the “embedded PostScript” option (which will automatically be replaced b
“normal”). It is advisable to use the high resolution bitmaps only if the high resolution information is
really needed. Otherwise use a normal picture or a low resolution bitmap because they require les
memory.

PICT Options are discussed in Chapter 12, “Printing”.
A drawing saved as a PICT or EPS file cannot be opened Byt jgiroymore.

To be able to modify it later, save a copy in thefréormat!

Exporting pictures over the clipboard

To copy a part of a drawing in order to export it to another application, select the objects you want tc
copy and choos€opy or Cut from the Edit menu. Alternatively, you can drag the selected objects
directly to their destination. The current PICT Options will be used to create the exported picture. PICT
Options are discussed in Chapter 12, “Printing”.

Exporting pictures using Publishers

To make a portion of a drawing available to other applications or other users, you can also use th
commandCreate Publisher in the Edit menu.

A Publisher creates a picture of a rectangular part of your drawing window, e.g. of a plot of some data
Creating a publisher will create &dlition Container a file containing this picture. When you change
something within the Publisher rectangle (e.g. you add some points to your plot), you can tell the
Publisher to send this newer Edition of the picture to its Edition Container. In this way, the Edition
Container always contains the latest version of the picture. By default, the new edition is always sent t
the Edition Container when you save your file.

If you are defining a series of drawings to be included in some publication written by somebody else, i
is useful to Publish the drawing using this feature, and load them into their destination using the
Subscribe mechanism. Another application can import the picture in the Edition Container by selecting
Subscribe tofrom the Edit menu. In this way you can be certain that the publication always contains
the latest version of your graphs or drawings. Whenever the contents of the Edition Container ar
changed, the subscribing application will be informed of the changes and will load the newest version.

To create a Publisher:

7-14 Drawing and Plotting

1. Select the objects you want to publish.

2. Choose Create Publisher from the Edit menu.
The following dialog box appears:

Preview |Gg screenshot and examples.. 3] - metoo
B A nice publisher < [Eect |
< Batchi =
N] & Batch2 _Desktop

[BullsEye (5] New

B Calc Menu Screenshot

1

Name of new edition: | Cancel

Lintitled Edition || Publish ||

| PICT Options ...

Click the buttonPICT Options to choose the PICT options for the publisher you are about to create.
(By default the current PICT Options are used.). Find more information about PICT Options in Chapter
12, “Printing”.

3. Select the appropriate name and location for the Edition Container and
click Publish to create it.

In the drawing window a Publisher is enclosed by a gray rectangle. This rectangle can be moved an
reshaped like other drawing objects. The publisher contains everything inside its rectangle.

Double-click the publisher rectangle to see the Publishers Options dialog box (or Plbdisaer
Options from the Edit menu). Apart form the standard items, this dialog box also contalagsTa
Options button in the bottom left corner. Use it to change the picture format used by the publisher.

Importing pictures

Every picture in the standard PICT format can be imported into a drawing window. (Note that you
cannot paste QuickDraw GX shapes intoFit®.0.)

There are two ways of importing pictures: over the clipboard (by choBsistgin the Edit menu) or
via an Edition Container (by choosiggibscribe toin the Edit menu).

Importing pictures over the clipboard or using Drag&Drop
When you create a picture in any application you can transfer it via the clipboard by copying and pastin
it or by directly dragging and dropping it into a pibdrawing window.

Note that prd-it imports pictures ‘as a whole’ and does not take them apart. If you use a drawing
application to create a line and a rectangle and paste these objects togetherFitjathmy are
interpreted as one picture, not as a line and a rectangle.

Drawing and Plotting 7-15

An imported picture can be resized or rotated, but it cannot be edited in any other way. Rotating an
resizing may not work with imported pictures if they contain any non-standard information, such as
PostScript commands.

Importing pictures by subscribing

Another method to import pictures is to subscribe to an Edition Container by choosing Subscribe To..
from the Edit menu.

To open the application that created the Edition container, Click Open Publisher in the Subscribe
Options dialog box (Choose Subscriber Options... form the Edit menu to see this box), or double click
the Subscriber while holding down the option key.

If you have resized a Subscriber (or rotated it), Go to the Subscriber Options dialog box and chec
Original size and orientationto go back to the original subscriber.

Plotting

proFit generates graphical representations of functions and data sets inside drawing objects calle
graphs The coordinates of the data points are stored in the graph with double precision, and can alway
be recovered from it.

A graph can have various components (read more about this later in this section). The most important «
these are its coordinate axes. A graph can have multiple x- and y- coordinate axes, which can ha
different ranges and scalings.

A graph always maintains two special coordinate axes, which can never be deleted. Thimane the
coordinate axes and are calleX1 andY1. The other axes are called X2, X3, Y2, Y3, and so on.

The axes can havmear-scaling,logarithmic-scaling,1/x-scaling or probability -scaling.
8 - Thelinear scaling type is the standard scaling type. It indicates that there is a linear

5 relationship between the coordinates of the graph and your paper.
g4y
oL
0102 ¢ A logarithmic scaling indicates that there is a logarithmic relationship between the
£ coordinates of the graph and your paper — it expands the lower end of an axis and
S10t: compresses its upper end. The min and max values for logarithmic axes must both be
15 positive.
100 L
1 The 1/x scaling type can be used to plot a function whose y-value is expected to be
9 proportional to 1/x. If you plot such a function on a “1/x” scaled x-axis, the function is a
= 20 straight line. The min and max values for 1/x-axes must both have the same sign.
10l

7-16 Drawing and Plotting

0.99 Theprobability scaling type can be used for plotting normally distributed data — or, to

)

= 0.90 be more accurate — their integral. If you have a sample of sand, and you determined the
%f 0.50 percentage of grains having a diameter smaller than x, plot this percentage as a function
s 8-3(13 of x using probability-scaling for the y-axis. If the size of the grains is normally

distributed, your data points will lie on a straight line.

With proFit, you can plot on any one of the coordinate axes contained in a graph, you can add nev
coordinate axes, and you can change their characteristics.

The next section discusses the general options that are always available when plotting. Then we discu
the procedures for plotting functions and data sets, and finally we describe how to edit and use existin
graphs.

General plotting options

Whenever you plot a function or a data set, you can choose if you want to plot it into an existing graph
or if you want to create a new one. You can also choose if you want to plot into an existing drawing
window or to open a new one. And finally you can choose which coordinates axes you want to use fo
plotting, their ranges, and their scaling.

To plot a function or a data set, choose Plot Function... or Plot Data... from the Draw menu. The
options outlined above are common to funchm data plotting and can be set in both the plot function
dialog box and the plot data dialog box. Therefore, the upper part of both dialog boxes looks the same:

PotDate == —
[+ Plot into current graph] Open new window
X=-axis Y=-axis
[X1 4][log | #|JAutorange [[[Y1 #][lin 4 |[JAutorange
from | 1 | to |20 from |0 to |30

CheckPlot into current graph to plot into the current graph. The current graph is usually the one
where the last plotting took place. However, you can define any graph to be the current graph b
double-clicking it and checkinGurrent Graph in the dialog box that appears (Read more about this
dialog box later in this chapter.). As a shortcut, you can hold down the command key and double-clic}
the graph.

CheckOpen new windowto create a new graph in a new drawing window

If both “Draw into current graph” and “Open new window” are unchecked, a new graph is drawn in the
frontmost drawing window.

The fields labeledX-axis andY-axis determine which axes will be used, their ranges, and their
scaling.

The two popup menus in the top left corner of the fields “X-axis” and “Y-axis” are used to choose the
axis to be used for plotting, and to determine its range. The second popup menu deterrsaadiaghe
type of the axis.

Drawing and Plotting 7-17

CheckAuto range to let proFit automatically calculate the ranges of the axes, starting from the y-
values returned by your function, or from the range of the selected data. If you plot into an existing
graph, the ranges of the axes you use for the plot will be extended, if necessary.

from, to are the ranges of the axes.

Plotting a function

To plot a function:

1. Choose the function you want to plot from the Func menu.
2. Set its parameters in the parameters window.

3. Choose Plot Function... from the Draw menu.
The Plot Function dialog box appears:

Plot Function ‘Polynom*

[+ Plot into current graph] Open new window
—X=axis Y=-axis

(X1 _#][log %] (¥l [#][lin | 4] Autorange
from| 1 to |20 from | 0 to |30
[] Use fitted parameters # Steps: | auto

= @ From X min to X max Line [_ -][ry][. ry

" (D From |1 to |20 2] [cancel |

The top part of this dialog box has already been discussed above. Here we go on to explain the rest of
contents.

The function can be plotted over the whole given range. Alternatively, you can specify start point anc
end point manually using th&fom ..to” edit items at the bottom left of the dialog box.

1.0 1.0
0.0 - 0.0 -
-1.0 + -1.0 A
L B L LR B L DL B R
0 1 2 3 4 5 0O 1 2 3 4 5

A graph with its curve from min to max (left) and a graph created using the “From.. To” option.

If Use fitted parametersis checked, the function is plotted using the parameter values calculated in
the last fit. If Use fitted parameters is not checked, the parameter values in the parameters window a
used.

7-18 Drawing and Plotting

If you are using linear x-axis scaling, the entry in the figtielp determines the distance (step width)
between consecutive calculated x-values. If you are using any other x-axis scaling, the field has th
name#Stepsand determines the number of x-values that will be calculated to plot the function.

The default value for step ifatito”. This invokes a specially designed plotting algorithm that
automatically selects the x-values at which the function is calculated. If the curve representing the
function is strongly bent in a given interval, then the number of points that are required for drawing the
function is large. On the other hand, if the function is a straight line, the number of points needed i
smaller. The following figure illustrates this.

— function
= caclulated points

Note that the number of calculated points is optimized for the range a function is plotted

in. If you change the axes range of a graph later (e. g. for “zooming” into a detail), the

number of calculated points may not be sufficient anymore for representing the curve

accurately. In this case you should redraw the function to create an optimized plot for the
o new range.

Note that plotting with the “auto”-option results in the smallest number of data points stored to represen
a function’s curve. In this way you can create a plot that uses a minimum amount of memory and that i
redrawn at maximum speed. However, to create such a curve, the function has to be calculated at a mu
larger number of points. If you are working with a slow function, you may prefer to use a fixed step to
obtain faster plotting, and to go over to auto step only when you want to produce a final graph.

Plotting a data set

To plot data:

1. Open a data window with the data you want to plot.
2. Choose Plot Data... from the Draw menu.

The following dialog box appears:

Drawing and Plotting 7-19

Plot Data

[+ Plot into current graph] Open new window
X-axis Y-axis
[X1 #|[log #|JAutorange [[[¥1 #][lin 4 |[JAutorange

from | 1 | to |20 from |0 to |30
Datawindow [population.data | %
X column | year 2 |
Y columns] Selected rows only
vear |~ | Point @Dtunnected

population in millions

Line |— E— [E
El | Eancell |DK|

The upper part of this dialog box was discussed above.

Special attention must be paid to the Auto range check boxes, because they also influence which parts
the complete data set are transferred to the graph.

If you do not uséAuto range but define your own ranges in min and max, all data points
outside these ranges are ignored — only data points within the ranges of the graph are
plotted and stored together with the graph. If you always want the complete data set to be
stored with the graph, check Auto range and resize your graph after plotting..

Use theData window pop-up menu to select the data window that contains the data to be plotted.

Use theX-column pop-up menu to select the column that contains-hedues of your data. You can
only select one-column at a time. Use thé-columns list to select the columns that contain jhe
values of your data. You can select multiple columns by holding down the shift key while clicking.

To plot only part of the data in the andy-columns, checlSelected rows onlyIn this case only the

data in the currently selected rows will be used for plotting. To use this feature, first select the rows yol
want to plot in the data window or with the help of the Preview window and then choose Plot Data...
from the Draw menu.

Use thePoint style pop-up menu to select a plot symbol. If you are plotting multiple data sets, only
the first set will be drawn with this symbol. The symbols of subsequent sets are chosen according to tr
currentgraph style See section “Styles”, later in this chapter for further information about graph styles.

CheckConnectedif you want to draw connecting lines between your data points. The data points will
be connected according to the order in which they appear in the data window — not in ascending order
x-values. If necessary, use the command Sort in the Calc menu to sort your data before plotting.

7-20 Drawing and Plotting

Graphs and legends graph

When you plot data or functions, you X’
create agraph objectand alegend
object. 2.0 - — y=x05
Graphs and legends are the most> o daa
important drawing objects. 1.0 4 \
0 O -[r' T I T I T I T I T
0 1 2 3 4 5 legend

Editing legends

A legend contains a description for each curve or data set of its graph. The 1st set
description consists of a symbol identifying the plot and a text. You can change 1st fit
the line and point style of a plot as well as the text by double-clicking the

respective items in the legend. 2 2nd set

» Double-click thetext of a legend to change a the name of a plot. ---- 2nd fit

* Double-click theplot symbol to choose the color, plot symbol and line styles for a plot.
Find more information on this topic later in this chapter.

To change the space allocated for the plot symbols or the distance between lines in the legend, simf
resize the legend by dragging its selection points.

A graph is logically linked to its legend and vice versa. If you change the appearance of a plot, the
change is reflected in both the graph and its legend.

To mantain this relationship, pro Fit does not let you duplicate a legend. However, you
can select a legend and choose Ungroup from the draw menu. This transforms the legend
into a set of simple drawing shapes, which then can be copied.

If you do not need the legend, delete it. You can always create a new legend for a graph by double
clicking the graph and checking “Draw legend” in the dialog box that appears.

Note that you can change the text style, font, and font size of a legend by selecting it and choosing &
appropriate setting from the Style, Font, and Size submenu in the Misc menu.

You also can change the line styles and color of curves and lines in a legend by choosing the appropric
setting from the “Pen” and “Dash” pop-up menus in the drawing tools palette:

» To change the line style of the first item in a legend that is drawn using a line (either connected dat.
points or a function curve), select the legend and choose the line style in the “Pen” and/or “Dash’
pop-up menus.

* To change the line style of all items in a legend, select the legend and choose the line style in th
“Pen” and/or “Dash” pop-up menus while holding down the shift key.

Drawing and Plotting 7-21

* To add a connecting line to the first data point in a legend, select the legend and choose a line sty
from the “Pen” or “Dash” menu while holding down the option key.

« To add a connecting line to all data points in a legend, select the legend and choose a line style tt
“Pen” or “Dash” menu while holding down the shift key.

By default a legend lists every plot of the related graph. You can, however, hide one or more plots fron
a legend by unchecking “Appears in legend” in the dialog box for editing curve styles. This is explained
later in this chapter.

A legend can be ungrouped by selecting the legend and choosing Ungroup from the Draw menu. Whe
an legend is ungrouped, it is transformed into a set of lines, data points and texts.

Editing graphs

The nearly unlimited possibilities for changing and editing a graph are one General...
proFit's key features. A whole set of specialized options lets you create tl X-axes...
graph you need. These options are accessed either by double-clicking Y-aXes..
graph or its legend, or by using tBeaph submenu in the Draw menu. (This CUFves
submenu is only available if a single graph is selected or if a drawing windo
contains only one graph.) Frame...
Grid...
Stvles...

When you double-click a graph or choose “General...” from the Graph submenu, the following dialog
box appears:

Graph Settings

- Draw: [+ Legend b Current graph
Genetal D Frame

] Grid

Amaxes)

I Drawing sequence | Grid - Axes/Frame - Curves | % |
ra—

E Graph width |10.583 cm
Curves Graph height |6.456 cm
Frame

orid 12| | Eancell |ch|

7-22 Drawing and Plotting

The icons in the list to the left of this dialog box correspond to the items @répd submenu. Click
the icons to access and edit the various parts of a graph. Cliélphe button to see the effects of
your changes.

CheckCurrent graph to make this graph the currently active graph. This is the graph where plotting
takes place per default.

The threeDraw check boxes indicate legend frame andgrid should be drawn or not. If you
uncheck the box named legend, the legend is deleted. If you check it again the legend reappears to t
right of the graph.

The Drawing Sequencepopup menu defines the order in which the various parts of a graph (curves,
axes, grid) are drawn. This is especially important if you use color to highlight your curves or if you use
very large data points. A grid in front of a curve can then look quite different from a grid behind a curve.

The Graph width andGraph height edit fields let you enter precise dimensions for the graph. You
can also do this by selecting the graph in the drawing window and editing its size using the Drawing
Info window.

The buttorStyleslets you save and load the current settings of a graph. A more detailed description of
graph styles is given at the end of this chapter.

In the following sections we discuss the various parts of a graph and how to edit them.

Axes

When you want to edit an axis, double click it. Alternatively, you can choose Axes... from the Graph
submenu in the Menu Draw, or you can reach the axis editing panel using the list of icons in the Grap
Settings dialog box.

The axis editing panel for x-axes looks like this:

Drawing and Plotting 7-23

Graph Settings

B — X1 = at¥= |0
General - # General O} Labels) Prefix) Lines —
- First|1 Last | 20 log =
H-axes

~Draw —— —Ticks] custom
e gi{x: 1st major [1

icks
Decades: |1
| E; [labels _ :
Curves 4 minor [+ minor ticks
| 1 1 1 1 1 1 I | 1

Frame 1 2 3 4 5 6 7 8910 20

S 2| | cancel | |DH:I

Use the popup menu in the top left corner to navigate between the various axes, to create a new axis,
to delete the current axis. (The X1 and the Y1 axes armadireaxesand cannot be deleted.).

The edit field in the top right corner gives the position of the selected axes in the main axes coordinat
system. Use this field to change the position of a horizontal (or vertical) axis with respect to the vertica

(horizontal) main axis coordinates. The position is set by default to the minimum and maximum bounds
of a plot when it is first created.

1.0 1.0 m
- h / " o V
-1|0 I T I T I T I -1-0 J

0.0 40 6.0

2.0 . . 0.0 2.0 4.0 6.0

Two graphs with different vertical positions of the horizontal axis.

If the dialog box does not show the main axis (X1 and Y1 are the main axes) an additional check box i
present. It is calle®ame as X1(or Same as Y1).

X2 - [+ Same as X1

If Same as Xlis checked, most settings of the selected axis (such as the range, scaling, color, line
thickness, tick positions) are taken from the main X1 axis.

7-24 Drawing and Plotting

If you want to use two different axes for the top and for the bottom of your plot, you have
to uncheck this box before making any changes.

The radio button§seneral, Labels, andLines let you switch between different sub-panels that are
used to edit the general appearance of an axis, the appearance of its labels, and the kind of lines that
used to draw the axis and its tick marks.

If you check General, you can set the following options:
- #® General O Labels) Prefix () Lines —

First| 0 Last | 20 lin =
~Draw —— —Ticks] custom
[axis 1st major |0
ticks
N Distance: |5
[+ labels
M minor #F minor |1

TheDraw check boxes determine which parts of an axis are drawn.

TheFirst, Last fields and the popup menu to their right are used to edit the range of the axis and its
scaling type. See the beginning of this section for a discussion of scaling types. Note that First can b
larger than Last if you want to reverse the axis.

TheTicks field to the right of the Draw check boxes is used to edit the tick marks. Enter the first major
tick, the distance between major ticks, and the number of minor ticks between two consecutive majo
ones.

The edit fieldlst major gives the coordinate of the first major tick on the axis.

For a linear axis thBistancefield defines the distance between the major ticks. For a logarithmic axis
this field changes its name Brecadesand defines the number of decades between major ticks. For a
1/x-scaling the edit fields work in the same way as for linear scaling. For probability scaling, you can
edit the list of tick marks directly using tiistom check box.

For a linear axis th# minor field gives the number of minor ticks that are drawn between two major
ones. For a logarithmic axis this field is replaced by a check box atial ticks, which must be
checked to draw the minor ticks. If major ticks are drawn for each decade, the minor ticks are drawn fo
each multiple of ten. If there is more than one decade between major ticks, the minor ticks are drawn
all the powers of ten between the positions of the major ticks.

Drawing and Plotting 7-25

Instead of automatically calculating the positions (—Ticks [+ custom

individual ticks, you can set them manually. Check tt D=
custom check box. This changes the contents of ti I“ 25 =]
A list appears that contains all the ticks of the axis. ~ 1ol
add a tick, click a free space in the list (there is alwa | Sstandard 125 |w

a free space at the bottom of the list) and enter i«
desired coordinate.

To remove a tick, select it in the list and press the delete key. To change the position of a tick, click i
and enter a new value. Chetlajor to create a major tick. Major ticks are writterbiwld facein the

ticks list. Click theStandard button to automatically re-calculate the tick positions according to the
present axis settings.

To set the label of a tick mark to some general text instead of a nudohbte-click the label in the
drawing window. The text edit dialog box appears and you can then enter any kind of text you want.

Click Labelsin the axis dialog box to edit the format of the labels. The inner part of the dialog box now
looks like this:

—) General @ Labels O} Prefix O Lines —

Format —Font
| Decimal 4| |[Helvetica % |

Digits El Size |12 @
Styl - S
Color [E e [Aen]

Location | below axis +] by|3 pt

Use theFormat field to set the format of the numbers. WBecimal to Auto
suppress exponential representatidnto exponentto have all labels
in exponential format with varying exponefixed exponentto have
all labels in exponential format with a common exponent. Diggts

field defines the number of digits to be shown after the decimal point!

Auto exponent
Fixed exponent

Use theFont field to specify the text font, size, and style to be used for the labels of the current axis.

The Location popup menu defines where the labels of an axis above graph
drawn. The edit field to its right defines the distance between the | above axis
and the axis or the frame of the graph The value in this field is in p
(= 1/72 inch or 0.35 mm). Note that it can also be negative.

below graph

Click Lines to change the appearance of the lines used for drawing the axis and its tick marks, and t
set the position where the tick marks are drawn. The inner part of the dialog box now looks like this:

7-26 Drawing and Plotting

— 3 General O Labels O Prefix @& Lines —

Axis line style [— &][CE]
Ticks location | top % |
— Major ticks — Minor ticks

length |5 Ipt length |3 pt

Erl—s) |=)—2]m ¢)

Use theTicks location popup menu to set the position of the tick marks. InMlagor ticks and

Minor ticks fields you can set the line style, length and color of major and minor tick marks. The line
style used to draw the axis can be edited using the “Axis line style” popup menus.All the options
outlined above for editing axes let you create many different kinds of graphs. Note that you can creat
new axes and change their scaling, tick marks, etc., also if you don’t use them to plot any curve.

For example, you can uncheck the “Same as X1” check box 100 101 102 103
in the X2 axis panel and edit it to reflect a completely ; 5 ol 4ol
different scaling, labels style, and range than the X1-axis.

A typical application for this is a graph that displays its x- 0.0 o
values on its horizontal bottom axis and the reciprocal x- .
values on its top axis. -1.0 — T T T+ T

0.0 2.0 4.0 6.0

A graph with a different coordinate axis
as the “X2" axis..

As an example, imagine that you have a set of data that was measured for different light wavelengtr
between 400 and 1000 nm. You would like to plot your data as a function of wavelength, but you would
also like to have a reading for the light energy in eV on the top axis. The energy of the light is inversely
proportional to the wavelength, so you have to use 1/x scaling for the top axis.

To create such a graph:
1. Create a graph with an x-axis from 400 to 1000.

Simply plot your data between these limits. Choeks Data... from the Draw menu. Make sure
that you create a new graph by unchecking ‘Plot into current graph’ in the dialog box that comes up.

2. Double-click the upper x-axis (“X2"-axis).

The axis dialog box (see above) for the top axis appears.
3. Uncheck “Same as X1".

Do this to make sure you only change the top x-axis, leaving the bottom x-axis alone.
4. Change the axis scaling to “1/x".

Be sure that the “General” radio button is selected and use the scaling popup menu, found to the rig|
of the edit fields for the axes ranges.

5. Enter 1.2398 for First and 3.0996 for Last.

Drawing and Plotting 7-27

A wavelength of 400 nm corresponds to an energy of 3.0996 eV, while a wavelength of 1000 nm
corresponds to an energy of 1.2398 eV.

6. Edit the tick marks

Do this by changing the values in the Ticks field. Note how the density of ticks tends to increase for
larger values. Go over to custom ticks and edit the ticks list directly if necessary.

The end result could be something like this:

Energy [eV]
3.0 25 2.0 1.7 1.5 1.3

=
o

Absorption [cnm]

O O 1 | 1 | 1 | 1 | 1 | 1

1400 500 600 700 800 900 1000
Wavelength[nm]

Note that the top axis, which has 1/x scaling, has the smallest value to its right and the largest value to i
left.

Click Prefix in the axis dialog box to set pre- and postfix for the labels, to multiply them with a given
factor or to offset them by a given value:

- 3 General O Labels @& Prefix () Lines —

Factor |mu

Offs et]

[Prefix ... Posthix ...

Click Prefix or Postfix to prepend or append a string to each label.

The value in field~actor is multiplied with the value of each label before its string is generated. You
may e.g. enter 100 here to display values between 0 and 1 in percent.

The vaue in the fiel®ffset is added before the string of the label is generated.

7-28 Drawing and Plotting

Curves and data points

You can change the appearance of curves and data points in a graph in many waysCQvasse
from the Graph submenu (Draw menu) or click the Curves icon in the Graph Settings box. You can als
double click a plot symbol in the legend.

The Graph Settings dialog box now displays the curves editing panel.

Graph Settings
B | Theory 4] Lines — 2] 318
Genetral] E}{periement = Points DED““EEtEd
Thick
] Fill E]tu axis

a— Coordinate Axes
- X1 [$][¥1 %]
Curves - [+ Appears in legend

[Forward [Backward [ErrurBars... [Tahulate T
Frame | ToFront || ToBack | | EditText.. | [Delete %D
FEH

Here you can select and change or delete all curves and data sets of a graph.

To change thérawing order of the plots, select a plot (by clicking it in the list) and ckakward,

To Front, Backward or To Back to move it one position backward or forward or to move it to the
back or front of all plots. The first plot symbol at the top of the list is drawn first, so back means top of
the list, and front means bottom of the list.

Change the drawing order if you have white data points behind a cu)rz\?z’a\ﬂk
and you do not want the curve to go through the points.

To change théext describing a curve or a data sdick Edit Text.... F/{D\q
Instead of doing this you can also double-clicktédxe

The pop-up menus titledne style let you edit the line that draws a curve or connects the data points.

The pop-up mentoints lets you select the symbol for data points. Chemknectedto draw lines
between successive data points TheumErncknessdefines the line thickness used to draw the data
point symbols. It can be set &nito, in which case the line thickness will be chosen depending on the
size of the data points.

Drawing and Plotting 7-29

You can also fill the region between a curve and one of the axes with a color of your choice. To do this
checkFill and select the axis towards which the curve must be filled and the fill color using the two
popup menus to its right.

The Coordinate Axespopup menu defines the coordinate axes used by the selected curve or data se
With this pop-up menu you can change the reference axis of any given curve.

Doing this for function curves which were drawn wéilito stepis not recommended. If
the scaling of the original axis and the one of the destination axis differ considerably, the
results can be disappointing. Remember that a function curve is only defined by a set of
points. prd-it calculated these points in an optimized way when it plotted the furiation

o the axis scaling and range on which the function was pldftgdu then change scaling or
range, your curve may loose its smoothness. In such a case it is better to redraw the
function curve on the new axis

CheckAppears in legendto make the curve or data set appear as an entry in the legend. Uncheck this
check box to hide the corresponding entry in the legend. When an entry is visible in the legend, you wil
usually change its style by double-clicking it. When an entry is not visible in the legend, you must
choose Curves... from the Graph submenu to access and change the style of the corresponding curve
data points.

Click Tabulate to recover the original data points that were used to draw the plot. In this way you can
retrieve data points from a drawing when you have lost the original data set, or you can obtain a list
the data points that pFet calculated to draw a particular function.

Click Deleteto delete the curve or data points from the graph. You can use the delete (backspace) ke
as a keyboard equivalent for this button.

Click theError Bars... button to define error bars for the selected data set (this button is dimmed for a
function).

7-30 Drawing and Plotting

Error Bars

Bar thickness @ Error bars as box
Cap thickness @ Cap length = | auto H‘%/

— Read errors from
window | population.data $ |

[] Selected rows only
[Skip empty data fields

— Yertical:] Use asymmetric errors
Type [Individual %]
Column [year 2 |

— Horizontal: [Use asymmetric errors
Type | None 2|

| cancel |

Here you can specify if you want to use error bars for your data points and if you do, what they shoulc
be.

You can use symmetric or asymmetric errors. To use asymmetric errors, dbecksymmetric
errors for horizontal and/or vertical direction, otherwise leave this option unchecked. If you check the
option, you can select the errors on the top/bottom (or left/right) of the data points individually.

Using the menus titledlype or Top, Bottom, Right, Left, you can select the type of errors to add:

» Chooseéndividual if each point should have its own, unique, non-percent error. In this case, you
must have stored the error values in a data window. Choose this window frévimthen pop-up
menu. Choose the column that holds your error values from the pop-upQaoémonn. The
numbers found in the chosen column are assigned to each point in the plot sequentially. If you don’
checkskip empty data fields an error of zero is used for each empty data cell. Otherwise,
proFit only uses data cells that contain a valid number.
Make sure that the column you select contains the correct number of error values and in the rigr
order (i. e. the same order as the data which was plotted originally). In general, you can add errc
bars months after you plotted the original data set, arféifploes not know the origin of the data
set anymore. It will simply take the error column you specify and apply the data values sequentially
to all data points. Therefore, the order in your error column must be the same as the order of th
original data points when they were plotted.

» ChooseConstant if each data point has the same error. Enter the error value in the edit field that
appears.

» ChoosePercentif the errors are a percentage of the x- or y-values of the data points. Enter the error
value (in percent) in the edit field that appears.

* ChooseNoneto remove the errors from you data set.

Drawing and Plotting 7-31

» ChoosdJnchangedif you don’t want to change the error bars in a given direction.

Frame

A frame is a rectangular box around your graph:

0.40 0.40 -

0.20 0.20

0.00 1 | 1 | 1 | 1 | 0.00 1
-20 -1.0 0.0 1.0 2.0 -2.0

An unframed and a framed graph.

-1.0

1.0 2.0

To change the appearance of a frame, either double click a graph and chcartteeicon, or choose
Frame from the submenu Graph in the Draw menu

In the dialog box that appears you can editliime style of the frame, and determine if tick marks

must be drawn on it. The tick positions of the main coordinate axes (X1 and Y1) are used. If you draw :
frame with ticks, you usually do not wish to draw the axes ticks as well: Uncheck the corresponding
check boxes in the axis dialog box.

Grid

Grid lines are horizontal and vertical lines at the positions of the ticks.

1000

1000

o 2 =
o - o
100 o 100&
= g
ob C
10 O 10
O o O
S N PO L P R B
10 2 4 6 8 10 12 10_D2 4 6 8 10 12

A graph without and with grid lines.

To add grid lines to your graph, double click a graph and cbBeaw grid. This will add horizontal
and vertical grid lines. To customize the grid lines clickGlniel icon in the same dialog box or choose
Grid from the Graph submenu:

In the Grid editing panel that appears you can define where you want to have horizontal and/or vertice
grid lines, and if you want to see them at minor ticks, major ticks, or both. You can also choose whict
axes must be used as a reference to draw the grid lines. The grid lines are drawn at the tick marks
their reference axis. By default, the ticks of the main axes (X1 and Y1) are used.

Graph Styles

The appearance of a graph is defined by many parameters, such as its size, the ranges of its axes,
number of minor ticks, the symbols used for plotting, etc. These settings are cafidetbea graph.

You can save the style of a graph to use it (or parts of it) later for another graph. Styles are saved in tl
preferences file.

7-32 Drawing and Plotting

By using styles, you can create graphs with equal formats, e.g. graphs having the same size, the sa
length of the ticks, the same fonts, etc.

To save the style of a graph you can either double-click the graph and click the button Style in the dialo
box that comes up, or you can choose Styles... from the Graph submenu (in the Draw menu) afte
having selected your graph:

Graph Styles

Saved styles:

Extra Large -
Standard

Save style as:] Default
Mew Style

| Delete I 12| | cancel I

This box shows a list of the styles that are already saved in the current preferences file. You can dele
one of these styles by selecting it and clickibgjete To save a new style, enter its name and click
Save To load a style, select its name in the scrolling list and tlaxkd. The name of the button
changes from Save to Load when you move from the Style name edit field to the Saved styles scrollin
list.

If you click the Default check box when saving a style, or if you define a style with the name
“Normal”, this style becomes pkit's default style. The next time you start up Bitp the first graph
you create will use this style.

When you load a style, a dialog box appears, asking you to choose which parts of the style you want 1
apply to your graph:

Drawing and Plotting 7-33

Apply Style

S5elect the characteristics you want to use :
[+ Bounds {Xmin, Xmax, ...}

[+] Axes and grids styles {thickness, color, ...}
[+ Curve styles {thickness, color, ...}

[+] Text stvles {font, size, ...}

[+ Label styles {(number of digits, ...}

[+ Tick styles (number of minor ticks, ...

[+ Graph size
|Cance|| | oK I

The characteristics of a style are:

Bounds The ranges of the graph, i.e. the minimum and maximum of all the axes; the positions of
the first ticks; the distance between major ticks; the number of minor ticks.

Axes and grid styles The line thickness, dash and color of the axes, the frame and the grid; the
distance of the labels from the axes; the location of the ticks (inside or outside).

Curve styles The line style of all plots, i.e. curves and data points.

Text styles The font, size, and text style of the labels.

Label styles The number format of the labels. The number of digits after the decimal point and the
representation (exponential, auto, decimal) of the labels.

Tick styles: The number of minor ticks, the axes scaling (logarithmic or linear) and whether the

labels are visible.

Graph size The horizontal and vertical size of the graph (length of the coordinate axes).

Graph coordinates and zooming

Normally you can look at coordinates and analyze data sets and function using the Preview window
However, options similar to the ones available in the preview window, although more limited, can be
used when editing graphs.

Hold down the command and option key simultaneously and click - #=0.41 y=0.80

drag over a graph object (the graph must not be part of a groupjt p
displays the mouse location in the main axes coordinate sys
The coordinates are displayed to the right of the cursor and in the b
left corner of the drawing window.

If you now press the shift key, you can select a part of the graph.
ranges of the graph will be changed to display only this part. Th|
useful for zooming in on some part of the plotted data set. -

7-34 Drawing and Plotting

8 Fitting

This chapter describes what piibdoes when you performfi.

‘Fitting the parameters of a function to a data set’ roughly means finding those parameters that make tt
function’s curve follow the data points as closely as possible.

There are various possible definitions of the term ‘as closely as possible’. The correct definition is often
determined by the origin and characteristics of the data set to be fitted. For example, a data set might |
subject to large errors in the x-coordinate and to smaller errors in the y-coordinates. The probability o
incurring in a given measurement error can decrease in some known way when the magnitude of tr
error increases.

There are also various possible methods of looking for the best parameter set.

proFit provides a choice of different ways for “measuring the distance” of the data points from the
function, as well as a choice of different methods to reach the best parameter sets.

The first part of this chapter deals with the definition and mathematical description of deviation functions
and fitting algorithms, the second part shows you how to select these optionEitrapbhow to run a
successful fit.

Mathematical background

In order to find the best parameter set describing a given measurement, it is necessary to establist
guantitative method to “measure the distance” between a data set and the function that should describe

This requires the introduction of weights for the data points and of probability distribution functions.
They are described in the next sections.

Distribution functions and data weights

Consider a functiori(a,,..,a,,x) =f(x) (we won't write explicitly the function parameters every time)
and a measured data $€x;,Y,),...(X,), (X, Ya)} -

Let’'s assume that the function, with its “true” parameter set, correctly
describes the quantity that was measured. We further assume that,
when the data poinfx,y,) was determined, the “true” system (the
one described by the functiéx)) was at the coordinatés., f (x.)).

When the x-coordinate was determined, an inevitable experimental
error occurred, andj was measured instead &f. When the y-
coordinate was determined, another inevitable experimental error
occurred, and the measurement ggvastead off ().

In real life the true parameter set is not known. One has to measure it by measuring many data points
different coordinates and fifx) to the complete data set. This is the way we usually find a parameter set

which best describes the measurement. The parameter set obtained in this way is not the true (unknow
parameter set, but it should be a good approximation for it. (See the section on Error Analysis to find ou
how to estimate the errors of the fitted parameters.)

Fitting 8-1

The fitted parameter set corresponds to a fundifgnwhich maximizes the probability that the
measured data set came from the system describdkoylo maximize this probability, we have to
minimize the deviations between the measured data points and the function curve. This deviation can t
defined in different ways, depending on the way in which the experimental errors are distributed, but i
is usually a function of the weighted distances

A~

d, =270 (1a)
axi
g, ==Y (1 b)
g

yi

g, and oy give the magnitude of therors expected when measuring theandy;, respectively. The

role of these x- and y- errors is to define the correct scaling of the x- and y- deviations between ¢
measured data point and the function that should describe it. The errors normalize the deviations
introducing dimension-less numbetg andd,; . Data points are weighted differently (given more or
less importance) depending on their errors. A small error will magnify the importance of a given
difference, a large error will make the normalized difference less important.

The distancesl; andd,;; give the difference between measured coordinates and “true” coordinates.
Obviously, we don’'t Know the true coordinates, otherwise there wouldn’t be any need for a fitting
program in the first place. But we can estimate the true coordinates by minimizing some function of the
distancesly; andd,;;. This function describes the “difference” between the model function and the set of
data points, and 1t is chosen in such a way that its minimization corresponds to the situation with the
highest probability of producing the measured data set.

If the x- and y-errors are independent, a fitting algorithm must generally minimiza@a deviation
XR Of the type

= |Rdy) + R (dy;)|,)
2

where the functlonRX aredeviation functionghat tell us in a quantitative way how bad it is that a
certain (normalized) distanag is found for a data point. They are normally related toether
probability distribution . This is the function that gives the probability that a certain measurement
error occurs. For exampl&y x,y can be the negative logarithm of the corresponding probability
distribution for the distances,; andd

Minimization of xg as defined in Eq. (2) adjusts the functf@g) in order to maximize the probability
that the measured data set corresponds to an underlying “reality” described by the #rljusted

This is true as long as the followiagsumptionis fulfilled: the measurement errors for each data point
must be uncorrelated and described by probability distributions centered around the “true” values
(%, F(%))-

The above assumption might appear harmless, but it is in fact more stringent than one would causal
expect. For example, in most cases one tends to assume that the probability distribution is Gaussian, t
the actual probability distribution for the measurement errors might be different, with a sizable proba-
bility of finding larger errors from time to timege. points that are clearly outside the expected trend
(“outliers”).

To allow for an analysis of such cases, fitgrovides a set of deviation functioRswhich correspond
to various error probability distributions.

8-2 Fitting

The most common deviation function provided byfitas thesquared deviation
R(d) = d2.)
When using this deviation function, Eq. (2) becomesrikan square deviationbetween data points
and function. Eq. (2) then corresponds to the negative logarithm of the probability of obtaining the date
set in the presence oformally distributed measurement errors. The deviation function (3)

corresponds to &aussianerror distribution. In this case the probability density that a certain error
occurs when measuringory; is given by a Gaussian distribution (or normal distribution)

The next deviation function provided by Bibis
R(d) =|d, (4)

and corresponds to a two-sidexponential error distributionexp(—(d]). It leads to the calculation of a
mean absolute deviationinstead of a mean square deviation.

The deviation function
R(d) = log(1 + %dz), (5)
corresponds to korentzian error distributionl/(1+ d*/2).

The last deviation functions available in pibare
EC[l cos(d/c)] |d<cm

R(d) = D |d>cmr’ ©)
with c=2.1 and
% ~H-2908 g <
R(d) = O UH : (7
C
= |d|>c

with ¢ = 6. These deviation functions are calletirew’s sine (the derivative of (6) is sia(c) and
Tuckey’s biweight, respectively. They don’t correspond to a particular probability distribution for
the errors. They are designed to decrease the weighting of data points with very big errors (outliers) i
order to allow a “robust” fitting through the more “reasonable” data points. It should be obvious that this
procedure should only be used if you know your experiment and data set well enough, and we repeat tl
usual calls for caution!

Note that using the deviation functions (6) and (7) with another corsiptjuivalent to changing all
errors of the data points and the resulting mean deviation value by a constant factor.

Each term in the sum (2) describes a deviation between the measured détg,ydiahd the “nearest”
point on the function curvéx, f (X)). The coordinates must be chosen in such a way that each term in
the sum (7) is minimized for each data point.

Fitting 8-3

When the deviation functioR is the squared deviatid®(d)=d?, then

each term in (2) gives the square of the Euclidean distance between
(x,Y,) and (X, f(X)). The term is minimized when the line connecting
the data point to the function curve is perpendicular to the function
curve. A fit-algorithm must thus adjust the function until the sum (2) of
the squared perpendicular distances between data points and function
curve reaches a minimum.

We refer to the literature for more detailed discussions of the above deviation functions. A short
description is also found in the classical book by W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T.
Vetterling,Numerical Recipes - the Art of Scientific Computing

The mean square deviation: Chi-Squared

When squared deviation functions are used, (2) gives the mean square deviation, which is often calle
X2

x —Xx)° (f(X)-V)?
XZ:Z(XI)2(1) +((|) 2y|) (8)
] axi ayi
The mean square deviation (chi-squared) is used when the measurement errors are described b
Gaussian probability distribution, and in this case the exgrsand 0,; correspond to thstandard
deviations of the Gaussian distributions.

The denomination “chi-squared” has become so common that it is often used to indicate the result of (2
and not only to indicate the particular case (8).

For the sake of simplicity, pfet follows this somewhat “dirty” convention and uses the
denomination “chi-squared” when referring to the result of (2), even if deviation functions
other than square deviations are used. The same is true for the predefined function
ChiSquared , which can be used in pit programs to retrieve the value of (2) obtained

o in the last fit.

Zero X-errors

In most experiments it is possible to determine the x-coordinate much more precisely than the y:
coordinate. In such a case the x-errors can be assumed to be very small. The only way to minimize tt
mean deviation (2) is then to haxe= x. The mean deviation function becomes much simpler:

-y U

Uf (x
Xe= 3 Ry ©

Oy

The function is evaluated at the x-coordinates of the measured points. The function value and measur:
y-coordinate directly give the normalized distance, when weighted with the measurement error.

The “usual case”: Chi-squared and zero x-errors

In many experiments it is not only possible to make the x-errors so small that they can be considere
zero. It is also common to have (or hope for) Gaussian distributed measurement errors. In this case v
have to minimize a particularly simple expression for chi-squared:

8-4 Fitting

2

X2 - z (f(Xl) 2yl) , (10)
] ayi

Since this case is easy to handle from an algebraic and numerical point of view, many common fitting

algorithms and applications work under the assumption that the mean deviation is the mean squal

deviation given by Eq. (10). A classical fitting algorithm that works on this basis is the Levenberg-

Marquardt algorithm in its unmodified, original form (see below).

Error analysis and confidence intervals

Although some fitting algorithms (most notably the Levenberg-Marquardt fitting algorithm) do provide
estimates for the error of the parameters, these estimates are often not sufficient or too imprecise.

proFit provides a general way for estimating the confidence intervals within which the “true” value of a
fitted parameter can be assumed to lie with a certain probability level.

The influence of variations in the data points on the fitted parameters is analyzed with the help of «
Monte Carlo simulation. For this purpose, synthetic data sets are generated starting from the point
(X, f(x)) that were obtained in the fit (see above). For each of the original data points a simulated dat:
point is generated by random variation aro§Rd f (X)) within the specified errors and using the
specified error distributions. This produces a synthetic data set that effectively simulates a measuremel
The simulation of the measurement is based on the function that was determined in the last fit (which i
assumed to correspond to the underlying “reality”) and on the measurement errors that were specified.

A short description of this error analysis technique is found in “W.H. Press, B.P. Flannery, S.A.
Teukolsky, W.T. VetterlingNumerical Recipes - the Art of Scientific Computing

For each of the synthetic data sets, a fit is performed. Once that all synthetic data sets have been fitte
the confidence intervalsare calculated by analyzing the values obtained for each parameter. The
confidence interval thereby corresponds to the range enclosing a given percentage of the values.

When error analysis is complete, the results are printed in the Results window and a list of the fittec
parameters for each synthetic data set appears in a new data window. You can use the set of simula
parameters for further statistical analysis.

Fitting algorithms

In the previous section we gave a short overview of the most important mathematical tools used t«
establish criteria distinguishing a good fit from a bad one. Once these criteria are established, one cc
use them to analyze parameter sets, and to find out in which direction the best parameter set can
found.

The search for the best parameter set is the responsibility of a fitting algorithm, > you
choose between three different ones: Wloaite Carlg Levenberg-MarquardiandRobustalgorithms.

The algorithms differ by the method they use to orient themselves in parameter space and to find th
location of the best parameter set.

The Monte-Carlo algorithm minimizes (2) with any definition d® by randomly varying the
parameters and (if the x-errors are not zero) the set of x-coordii}aamj looking for the smallest
value of (2). This algorithm is often useful to scan parameter space and find good initial values for ¢
Levenberg-Marquardt, or Robust fit.

Fitting 8-5

ThelLevenberg-Marquardt algorithm minimizes the mean square deviations using (8). It finds at the
same time the set of x-coordinat&gsand the function parameters that minimize the mean square
deviations between the data poisy;) and the function valuek, f (X)). When the x-errors are zero,
the Levenberg-Marquardt algorithm minimizes (9).

The Robust fitting algorithm minimizes (2) with any definition &by continually moving “downhill”
in parameter-space until the bottom of a valley is found.

The Linear Regressionand thePolynomial fitting algorithms are specialized for polynoms &f 1
and rih degree. While the Linear Regression allows for x-errors (we use a straight forward algorithm if
there are no x-errors), the Polynomial fitting algorithm is restricted to y-errors only.

The mathematics used by the various algorithms to perform their job is outlined in the next sections.

The Monte Carlo algorithm

This method randomly varies the parameters of a function within given intervals. When x-errors are
defined, the algorithm also varies randomly the set of x-coordinxatedile observing the given errors
and error distributions.

For each random guesgs is calculated according to Eq. (2) and the parameter sets corresponding to
the smallest values gz are remembered.

The strength of this method is also its biggest disadvantage. It looks for the best parameter set k
shooting blindly inside the given region of parameter space. Although there is an option of letting this
parameter space region follow the position of the currently best parameter set, this algorithm can onl
converge very slowly towards the best parameter set.

Its main use is to “scan” parameter space in order to find good parameter starting values for one of tr
deterministic fit algorithms, or to try to “jump out” of a local minimum where a deterministic fitting
algorithm is stuck.

Since the algorithm is normally used for a first estimate of fitted parameters, it is not recommended tc
run it with non-zero x-errors — this merely slows down the algorithm without substantially increasing the
accuracy of the estimates.

The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is derived directly from the mean square deviation expressions (8
or (10) and cannot be used with deviation functimsher then the square deviatig) = d?.

The Levenberg-Marquardt algorithm is in principle the fastest fitting algorithm available Fit.pite
performance, however, depends strongly on the behavior of the function to be fitted as well as on th
selected starting parameters.

The classical version of the Levenberg-Marquardt algorithm does not allow for x-errors and minimizes
the mean square deviation (10). The algorithm can be described in words as follows:

Starting from a given set of parameters, the mean square dey@t®oalculated. Then the parameters

are varied slightly to observe their influencey@nFrom this, the direction in whigf? decreases most
rapidly can be evaluated and a new set of parameters is chosen. This procedure is reiterated with tf
new set of parameters . When the minimum is near, the algorithm goes over to a more deterministi
“guessing” at the position of the minimum and solves some equations to find it. The fitting stops when
the value of2 does not decrease anymore between successive steps.

8-6 Fitting

The algorithm is described in W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vettdhlinggrical
Recipes - the Art of Scientific Computiggcond Edition, University Press, Cambridge, 1992.

When x-errors are specified, the algorithm is modified in such a way that it minimizes (8). It finds at the
same time the set of x-coordinatgsand the function parameters that minimize the mean square
deviations between the data poixsy.) and the function valuesk, f(X)).

The extensions to the Levenberg-Marquardt algorithm that allow the interpretation of x-errors are
described in P.L. Jolivette, “least-squares fits when there are errors in X,” Computer in Physics, Vol. 7
No. 2, 1993.

Partial derivatives

To fit a function of the typey =f(a,,..,a,,X) the Levenberg-Marquardt algorithm needs the partial
derivatives of the function with respect to its parameters. It uses the partial derivatives when it estimate
the influence of the parameter sefi{on x2. The partial derivative§' are given by

f'(x) = —af(aigéan'x) (11)

and they are calculated for all x-coordinalesduring every iteration.

When you define your own function for fitting and you find that the fitting process is too
slow, then you should define these derivatives explicitly (in the procedure called
derivatives). If you do not define the derivatives yourself, pitomust calculate them
numerically. This makes fitting considerably slower.

More information on how to define functions and their derivatives is given in Chapter 9, “Defining
functions and programs”.

Estimation of parameter errors

The Levenberg-Marquardt algorithm allows the determination of the standard deviations of the
parameters. These are the values that are printed in the results window after a successful fit, under t
heading "standard deviations". The standard deviation defines the region that contains 68.3% of the tot
integral of a Gaussian distribution.

The standard deviatioanaj of the parameter vaILa? obtained after a successful fit is found from
% =G | (12)

whereC;; is the diagonal element of tlevariance matrix C. The full covariance matrix of the
parameters used in the fit is the inverse of a mAtrig=A-1.

The matrixA is also calleaturvature matrix, and it is defined by the errors (standard deviations) of
the data points and by the partial derivatives of the function with respect to the parameters. When x
errors are specified the derivative of the function with respect to x must also be calculated and th
curvature matriA is given by

Fitting 8-7

EBf(xk) af(xk)D

. 13
A= ™ g (13)
a +0? g;
ox
If the x-errors can be considered to be zero, the curvature dias the simpler form:
D
A = 1 Lhf(x) 0f(x) (14)

aykE da 0a
Loosely speaking, this matrix describes the propagation of the errors from the data points to the
parameters. We refer to the specialized literature for more details.

If the x-errors can be regarded as zero Hirtets you specify “unknown” y-errors. In this case, yhe
are assumed to be normally distributed, all with the same standard dewiattan fitting, o, ; is taken
to be 1 for ali. The “real"a,;? is then estimated from?2 = x2/ v (wherev is the number of degrees
of freedom, i.e. the number of data points minus the number of parametews); amdalculated from
the expressions given above.

It is interesting to consider the case where a parameter reaches one of its limits during a fit. As yo
know, proFit lets you specify, for each function parameter, an interval of allowed parameter values. If a
parameter is at one of the boundaries of this interval after a fit, its standard deviation cannot be calct
lated. The parameter is then considered to be constant (i.e. it iSreetpmrameter anymore). The
standard deviations of the other parametersy@natre calculated using the effective number of active
parameters at the end of the fit. The results obtained are the same as those that would have been obtai
by fitting with the parameter fixed at its limit from the start.

The standard deviations of the parameters (and the covariance matrix) that are obtained in a
Levenberg-Marquardt fit have a clear quantitative interpretation only if the errors of the
data are normally distributed. If the data errors are not given, the calculations for
evaluating the standard deviations of the parameters assume tlyatatleenormally

o distributed and that the function is the correct description of reality.

Interpret the results carefully !

An alternative, more general way to estimate the errors of the fitted parameters is described in the secti
“Error analysis and confidence intervals”.

The Robust minimization algorithm

This method minimizegr (2) with any definition oR by continually moving “downhill” in parameter-
space. Starting from some initial value, the parameters are varied and the resulting ygueés of
calculated. From this, the algorithm finds the direction in wihjjglilecreases and moves that way. Then
it samples again the surroundings by varying the parameters. It stops when a minimum is reached.

When the x-errors are not zero, tﬁpnecessary for calculating the “minimal distance” between a data
oint and the funcgtion curve are calculated for each data point by an explicit minimization of the term
TR(dxi)+ R(dyi)(] in Eq. (2).

Minimization is performed with limited precision in order to save processing time XTiéll be
determined to an accuracy which is a fraction of the x-error specified for each poffit.\pitbalso
count the number of function calls it is using to determineXynand will stop after a maximum of 50

8-8 Fitting

function calls (normally much less function calls (<10) are needed to find the minimum). This procedure
introduces a small uncertainty in the determlnatloNF@fHowever the statistical significance of such

an uncertainty will be limited, because the precision with whleh>qhare determined is in any case
much better then the errors of the data points.

A robust fit with x-errors larger than zero will be considerably slower than the same fit

performed with zero x-errors. When for zero x-errors evaluation of (9) requires a number
of function calls equal to the number of data points, evaluation of (8) will require more or

less ten times more function calls when x-errors are defined.

The Linear Regression algorithm

In this case we assume a straight-line model for the measured data with normally distributed errors.
y(x)=a+bx (15)
A) If there are no x-errors and the y-errors are assumed to be kapisri{e uncertainty ofi) equation

(9) can easily be simplified. At its minimum the derivatives after the two pararaetedb vanish. This
leads to a set of linear equations that are solved analytically:

,_S8°SS, |, _SS,"S§
A A

(16)
using the following definitions:
— = 1 — s Xi — - yl
S=Z_2,SX=Z_2’SY=Z:LFIZ’
N N Xi
S = Sy=D — 17
; 1=1 ()
a=ss,-(s)

From these we are also able to calculate the variaheesnalb, and the correlation coefficient between
them:

=S/, 08=S/A,

=S a9
V&S

B) If the measurement shows errors iaxhthe minimization of (8) becomes more difficult, i.e. the set
of equations derived faa andb are not linear any more. However, they are solved with numerical
means, i.e. with a standard root finding algorithm.

Together with the fitting parameters and their variances the correlation coefficient r is calculated
(Pearson’'s r). It takes a value between -1 and 1 depending on how much the x-values and tt
corresponding y-values are correlated. r = +1 if there is a complete correlation with a positive slope, r -
-1 if there is a complete correlation with a negative slope, and r = 0 if there is no correlation at all.

Fitting 8-9

The significance of the correlation is the "probability that |r| should be larger than its observed value ir
the null hypothesis" (x and y being uncorrelated). It ranges from 0 (= good correlation) to 100% (= bac
correlation).

We refer to the specialized literature for more details.

The Polynomial fitting algorithm
Our model is the general linear combination of arbitrary functions

M
= Z axFr(X) (19)

=1
The functiond=k can be wildly nonlinear functions gf “Linear" refers only to the model's dependence
on its parametera.
Once again we assume that the measurment efroo$ theith data point are known. By defining the
matrix A and the vectors anda as

Yi

Fj(Xi) i _
— b= a (20)

A =

it is possible to describe the minimization equations in matrix form
(AT)2=ATDb (21)

The variances of the parameters can be found as the square root of the diagonal elements of the inve
matrix A™.

To solve equation (21) we use the method of Singular Value Decomposition (SVD). It is a very robust
algorithm for overdetermined as well as for underdetermined systems, although it is a little slower anc
needs more memory resources than solving the normal equations.

For further details see the literature listed below.

Goodness of fit

It is very important to know the quality of a fit; otherwise the minimizing parameters found are in general
not meaningful. The goodness of fit, which is the probabfBtyhat a value of chi-squar¥ should
occur by chance, is calculated by the incomplete Gamma function

_ N-M x*0
Q—gammgf “H (22)

It depends on the degree of freedom, defined as the difference between the number of measured poil
N and the number of varied parametdrs

If Q is large, e.g. > 0.1, the fit seems reasonable. If it is small, e.g. < 0.001, there might be somethin
wrong.

Literature and suggested reading

W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. VetterliNgimerical Recipes - the Art of
Scientific ComputingSecond Edition, University Press, Cambridge, 1992.

P.L. Jolivette, “least-squares fits when there are errors in X,” Computer in Physics, Vol. 7, No. 2,
1993.

8-10 Fitting

The fitting process

General features

With proFit, fitting is a highly interactive process. You can decide which parameters have to be varied,
set their starting values (estimates) and choose a fitting method. You can inspect the fitting process whi

it is running, and interrupt it if you don'’t like it. You can reiterate the process and change fitting
algorithms..

The fitting process starts from the parameter values given in the parameters window. You can chang
these values (click the numbers and edit them). The window also shows which parameters are to |
fitted: Only those whose name is showrbald face will be fitted (for these parameters the check box
“Use for fitting”, which appears when you select a parameter, is checked).

The following is the parameters window for the function Polynom. All parameters will be fitted except
the parameter named ‘deg’:

fN=——————— Polynom=s——f——— =

parameters | | & !
deg = 3.0000000 const=[000 | al = 0.0000000 a2 = 1.0000000

a3 = 0.0000000

selected pararmeter

flx] = const + al ¥x +..+ aS¥x°3Z ¢ Cuonffset)
deq: degree of the palynornial canst ly-otrse

lower limit=[none | [EUse for fitting

To change the fitting mode of a parameter (e.g. from ‘fit’ to ‘not-fit’), click its name. It will switch from
bold to normal or from normal to bold. Alternatively, you can click the checkJsexfor fitting, in
the “selected parameter” field.

Some parameters can never be fitted. For example, it does not make sense to fit the degree of

polynomial. The name of such a permanently fixed parameter cannot be made bold by clicking it. The
Use for fitting check box is disabled.

Parameters that can never be fitted are caledtantparameters, those that are currently not fitted are
calledinactiveparameters, and those that are currently fitted are ealte@parameters.

Parameter limits

The value of a parameter can be limited to any specified interval by entering the boundaries of the
allowed interval in the corresponding edit fields. The edit fields appear in the “active parameter” field
once you select a parameter. A parameter is not allowed to leave the specified interval during fitting
optimization of the function, or when you enter a new value in the parameters window.

See Chapter 5, “Working with functions and programs”, and Chapter 8, “Defining functions and
programs”, for more information on how to set parameter limits in user-defined functions. If no limits
are specified, the default values areandco (-Inf..Inf).

Fitting 8-11

During fitting, each parameter is constrained to the interval specified by the parameter limits.

Running a fit
Running a fit consists basically of three simple steps:
1. Choose the function to fit in the Func menu.
Add your own function to the Func menu if it is not already there.

2. Define which parameters you want to fit and their starting values.

You can do this in the parameters window as described above. Look at the function and the data s
in the Preview Window to see how good your starting values are. Ugdttimgy-tool in the
Preview Window to “push” the function towards the data points.

The importance of good starting values depends on the function to be fitted. Some functions, like the
Gauss function are more difficult to fit. A polynomial can be fitted with almost any starting parameter
set.

3. Choose Fit from the Calc menu.

The Fitting Setup dialog box appears:

Fitting Setup

Algorithm | Polynomial % |
—Data Use last choice —
Window | Untitled Datal | % | [Selected rows only
X column [year % | ¥column| population in milli.. % |
X errors | Zero [Yerrors[Unknown % |———
Column Column
Distribution Distribution

Error analysis:

[+l Print full description

[] Print active parameters only 2| | cancel I |I‘JKI

Using this dialog box, you can set a number of fitting options. Once you are satisfied with them, click
OK and fitting will start.

You can switch from one fitting algorithm to the other usingAlgorithm popup menu. More details
about particular options for each algorithm are given below.

TheWindow menu lets you select a data window (by default the foremost data window).

8-12 Fitting

The X column andY column menus define the data set coordinateandy;j. If Selected rows
only is checked, only rows intersecting the current selection are used for fitting. Otherwise, all data in
the X- and Y-columns will be used.

The popup menuX-Errors andY-Errors let you specify the errors of your data. In the X-Errors
menu, chooseero to use zero x-errors (the usual case). In the Y-Errors menu, choksewn if

you don’t want to specify y-errors — in this case, a value of “1.0” will be used as the error for all data
points (regardless of the order of magnitude of the y-values) and all points will have the same weight i
the calculation ofyr (which is calculated WithtTyi =1). ChooseConstant to set the standard
deviation of all points to a given absolute value. Chd®skeentif you want to enter the error as a
fraction of the data value in %. If you have the errors stored in a column of your data window, then
selectindividual and choose the appropriate column in the pop-up menu that appears.

Make sure that the columns you select contain the correct error values in the correct
positions. For each row in the table, there must be a one to one relationship between the
values in the-, y-columns and the values in the error columns.

The Distribution popup menu, which appears when you define errors, gives the error-probability
distribution that will be assumed for the fit. This popup menu is dimmed if the Levenberg-Marquardt
algorithm is used, because this algorithm only works with Gaussian error distributions.

The check boyJse last choicdells proFit to use the data window and error settings of the previous
fit. This feature is rarely used, but it makes fitting easier when you have to fit the same data column:
several times but want to work with other data windows before and after a fit.

The results of the fit are shown in the results window. Clirakt active parameters onlyif you

only want to see the values of the parameters that were fitted. Use this option if your function has man
parameters that you do not fit and you do not want all the values of inactive or constant parameters t
clutter the results window. Cheékint full description to get, for each fit, a header that describes
the settings that were used for fitting.

CheckError Analysis if you want to obtain more information on the accuracy of the fitted parameters.
Confidence intervals for each fitted parameter will be determined by a Monte Carlo method that simulate
a large number of fits with a series of synthetic data sets. More about this in the Error Analysis section
below.

To start fitting, clickOK. Fitting can run for fractions of a second or for hours, depending on the
execution speed of the function you selected, the number of parameters to fit, and the number of da
points. The results of the fit appear in the result window. You might want to choose its name from the
windows menu and position it in a comfortable place before running a fit. You can et ahoays

bring the results window to the front after a fit by using the Preferences... command.

To speed up fitting when you are using one of your functions, you should define the function’s partial
derivatives with respect to its parameters. The section “The role of the partial derivatives” below gives
more information on this topic.

You can interrupt fitting by holding down the command ki) &nd the period-key (.) simultaneously.

Note that prd-it can run any fit in the background, this means that you can work with another
application while pré-it is fitting. You may want to place pFat's progress window in a corner of your
screen to watch what is going on.

Fitting 8-13

Inspecting the progress of a fit

During lengthy fits, you can inspect what is going on and see if the fitting algorithm is behaving
correctly. prd=it displays information on the current fit in its progress window:

profit
Fitting ...
iteration: 4
chi squared; Q22TTSTe-2

armpl 0332209
delay 1109223

type to interrupt

This window lists the total number of iterations, the current values of chi squared, and the current value
of the best parameter set.

You can see the progress of the fit graphically if you open the Preview Window and check the Shov
Function check box. During a fit, pFat will periodically draw the function corresponding to the best
parameter set. This allows you to see how the function approaches the data set during a successful
Because of this previewing feature, you will notice soon enough if the fit is not converging correctly,
and will then be able to interrupt it.

If your function performs many lengthy calculations, redrawing the function periodically
can slow down the fit. Hide the Preview Window, or uncheck “Show Function” if fitting
speed matters.

Error analysis and confidence intervals

CheckError Analysis in the Fit dialog box to get more information on the confidence intervals of the
parameters.

When Error analysis is checked, two more edit fields appear in the Fitting Setup dialog box.

8-14 Fitting

Fitting Setup
Algorithm | Robust 2 |
—Data [] Use last choice —
Window [Lintitled Data 1 —]] Selected rows only
X column | year 4| Ycolumn| population in milli... % |
Xerrors [Constant | $ |——— ~Yerrors| Constant | |———
Error = 0.2 Error = 0.3
Distribution [Gaussian =] Distribution [Gaussian =]
] Error analysis: Iterations = | 500 confidence intervals = |68.3 [T
[+ Print full description
[] Print active parameters only 2| | cancel I |I‘JHI

The Error Analysis algorithm simulates a number of data sets equal to the value specified in the
iterations edit field. For each iteration, the corresponding parameter set will be determined by the
fitting algorithm you selected (either the Robust algorithm, or the Levenberg-Marquardt algorithm).

You should always use the Levenberg-Marquardt algorithm when performing error

analysis. Using the Robust algorithm is not recommended because this algorithm is

inherently slower than the Levenberg-Marquardt algorithm. Since error analysis can

need thousands of iterations, the convergence speed of the algorithm is very
o important.

All parameter sets generated during error analysis will be collected and displayed in a data window onc
Error Analysis is completed. You can then use them for a more complete analysis of the distribution o
each parameter.

Based on the simulated parameter setsi-prestimates confidence intervals. You must specify which
confidence interval you want pFat to calculate by entering the corresponding probability in the
confidence intervalsfield. proFit calculates a confidence interval in such a way that the given
percent of the simulated parameter values are contained inside it.

During error analysis, piféit shows the status of the calculation in its progress window:

Fitting 8-15

profit

Error analysis

g |

0% 100 %
armpl 0269736 02705362 -
delay 1109221 1109222

type to interrupt

The window shows the status of the calculation and the confidence interval estimations based on tt
currently available data. The calculation is a Monte Carlo calculation, so the boundaries of eact
confidence interval will converge slowly and randomly towards some stable values.

If you want to see what happens during error analysis and your function draws itself fast enough, ope
the Preview Window and make sure “Show function” is checkedFipwill redraw the function
periodically during error analysis and you will be able to see how the fitted function changes depending
on the simulated data sets which are generated randomly. However, doing so will waste time fo
drawing the function and slow down the error analysis procedure. Hide the Preview Window, or
uncheck “Show function” to make the error analysis procedure as fast as possible.

Fitting results

When fitting is completed, a summary of the results of the fit is displayed in the results window.
Depending on which fitting algorithm you used, the data printed to the results window can vary slightly.

You may often want to transfer the values of the fitted parameters to the parameters window to use the
as starting values for a further fit. ChoosPgrams ->>from the Calc menu transfers the best set of
parameters to the parameters window.

The results of a fit are made available to custom functions and programs through a set of predefine
functions used for accessing the fitted parameters, the confidence intervals, the value of chi square
and, for the Levenberg-Marquardt algorithm, the full covariance matrix. See Appendix A for more

details.

If you want to save the parameter sets obtained in every single fit, store them in a dedicated dal
window. You can copy them from the parameters window and paste them into a single row of the dat:
window, or you can write a small macro (a proprogram) that transfers the fitted parameters directly

to their data window. See chapter 9 “Defining functions and programs” to see how to do this. An
example program for transferring parameter values to a data window is found onRhelstabution

disks.

Using the various fitting algorithms

proFit provides three different fitting algorithms: Thknte Carlg Robust andLevenberg-Marquardt
algorithms. They are described in the preceding section.

8-16 Fitting

The following sections describe how each of these fitting algorithms is used, and what particular option:
you can set for each algorithm.

Using the Levenberg-Marquardt algorithm

To start a fit with the Levenberg-Marquardt algorithm, chdeiseérom the Calc menu after having
selected the appropriate function from the Func menu. The Fitting Setup dialog box appears witl
Levenberg-Marquardt pre-selected in the Algorithm popup menu. :

See the preceding section for a description of this dialog box.

When you define errors, tHaistribution popup menu is dimmed and set to a Gaussian distribution.
The Levenberg-Marquardt algorithm can only work if the errors of the data set are normally distributed.

The Levenberg-Marquardt fit stops running when the chi-squared determined from the current paramete
set doesn’'t decrease appreciably anymore from one iteration to the next.

When finished, the parameter values and their standard deviations are printed to the results window.
you need to access the complete covariance matrix, you can define a program that uses the predefir
functionCovarMatrix . See Appendix A for more details on how to use this function.

Using the Robust minimization algorithm

To run a Robust fit, choose “Robust” in the algorithm popup menu of the fit dialog box. This dialog box
appears when selecting “Fit” from the Calc menu, and it was described above.

Using theDistribution popup menu, which appears when you define errors, you can select the error
distribution that best describes your experiment. Robust fitting will deserve its name if you select a
distribution that diminishes the importance of outliers (like Andrew’s sine or Tuckey’s biweight).

When finished, the resulting parameter values are printed to the results window. This algorithm does nc
determine a “standard deviation” for each parameter, like the Levenberg-Marquardt algorithm does. T
obtain error estimations you have to run a Levenberg-Marquardt fit after the Robust fit converged, ol
you have to check thError Analysis check box and perform a Monte Carlo analysis. See the
corresponding section for more details.

Using the Monte Carlo algorithm

To run a Monte Carlo fit, chooddonte Carlo Fit from the Calc menu or chose Monte Carlo in the
Algorithm popup menu of the Fitting Setup dialog box.

When you do this, two more items appear to the right of the Algorithm popup menu (Please refer to th
beginning of this section for a basic discussion of the Fitting Setup dialog box.)

Fitting Setup

Algorithm [Monte Carlo #] [+ Auto search

Data Lse last choice
r H R

Clicking Ranges.. presents another dialog box where you can define the ranges within which the pa-
rameters can be varied:

Fitting 8-17

Fitting Ranges for "Monte Carlo® Fit

Parameter Value From To o

const =0 -1 IE %
al =0 -1 1 Yo
az =1 -10 10 [%
al =0 -1 1 Yo

2] | cancel | |DK|

By default, these ranges are the ten percent deviations of the starting value of the parameter (or —1 anc
if the starting value is 0).

CheckingAuto searchtells proFit to make a more flexible search for the best set of parameters.

The Auto search check box determines whether the limits within which the parameters are varied will be
kept fixed (auto-search unchecked) or if they will be adapted during the fit (auto-search checked). In th
latter case, the limits will be shifted after every iteration to keep them around the best parameter se
(Note that the parameters are never allowed to leave the parameter limits defined in the paramete
window.)

The Monte Carlo Fit runs until you interrupt it by press3fig.’. If you don’t stop the fit yourself, the
Monte Carlo Fit runs for ever.

The three best sets of parameters are displayed in the results window after you interrupt the fit.

The Monte Carlo fit slows down exponentially when the number of parameters to be fitted
is increased.

Using the Linear Regression algorithm

To run a Linear Regression fit, choose “Linear Regression” in the algorithm popup menu of the fit
dialog box. This dialog box appears when selecting “Fit...” from the Calc menu, and it was describec
above.

As the name indicates, this algorithm forces you to select the Polynomial function of degree 1, with bott
parameters being fitted. It assumes a Gaussian distribution of errors. X-errors and Y-errors are possibl

8-18 Fitting

When finished, the parameter values and their standard deviations are printed to the results windov
Additionally, the correlation coefficient r is calculated, as well as its significance, which is the
probability that |r| should be larger than its observed value in the null hypothesis (x and y being
uncorrelated).

Using the Polynomial fitting algorithm

To run a Polynomial fit, choose “Polynomial” in the algorithm popup menu of the fit dialog box. This
dialog box appears when selecting “Fit...” from the Calc menu, and it was described above.

As the name indicates, this algorithm forces you to select the Polynomial function of any degree. I
assumes a Gaussian distribution of errors. Only Y-errors are possible.

When finished, the parameter values and their standard deviations are printed to the results window.

Fitting multiple functions and x-values

You may sometimes want to Btmultaneouslseveral functionsf{ .. f;) with one or more common
parameters. Or you may want to fit a function that does not depend on axsrafile but on a sex{,
X9 xp) of x-values. Or you might even encounter a combination of these two cases.

In the most general case, you havinctions, each of them depending on one or more x-variables.
Each function has some parameters, some functions can share one or more parameters:

y1 =f1(x1, X2 ... Xp7)
y2 =f2(x1, X2 ... Xpy)

yq = fg(x1, X2 ... qu)
For each function, you have a set of data points that should be described by it. Now you want to fit al

these functions simultaneously.

There are several methods of tackling this kind of problem witkipr8ome of them are described in
the following section.

Functions with multiple x-values
Let us first consider the special case of a single function that depends on more thaalose

y =f1(X1, X9 ... xp).
Example: The photoconductivity of some light detectors as a function of the incident light intehsity
and the operating temperatdrebeys a relation of the form

o =sleloT,

wherel is the intensity of the incident light afids the absolute temperature (in KelvispndT, are
parameters.

In our example, we have a number of measurements of the condugtatityifferent temperaturels
and different intensities The values are given in the table below.

Fitting 8-19

Temp Intensity conductivity

[K] [mW/cm?] [10-8 Q-1cm-Y
200 0 0.00
200 20 8.45
200 40 16.90
200 60 25.35
300 0 0.00
300 20 14.64
300 40 29.29
300 60 43.93
400 0 0.00
400 20 19.28
400 40 38.56
400 60 57.84

Here is a graphical representation of this data set:

60 - O
_ o T=200
\n o T=300 o
§ 40 4 © T=400 o
c - o
e} &
S) 7 &
O -(‘: T I T I T I
0 20 40 60
| [MW/cm2]

In order to fit these points with our function, we must define the function and the data set in such a way
that the function can obtain its two x-values from the current data window. We enter the temperature
(which is ourxq value) into column 2 of a data window, the intensifyhich is ourx, value) into
column 3, and the conductivity (which is guwalue) into column 4. We fill column 1 with numbers
from 1 to 12, thus numbering all our measured points.

8-20 Fitting

cond data Saasa8a]ab——— El E
; 1% 1 I = I = [a4 il
‘ N T [k] | [r fomi2] cond Cd=
1 100000 200 00000 L0000 .00 [~

2 2000020000000 2000000 SAS02:

B 2000020000000 40000008 .. 1670023 ...

4f 00000 Zo0o0ooo: L enonaoo: e

o000 SO0 000000000 000000 ...

6m00000 0000000 2000000 .. 1464633 ..

A n QOO0 S00.00000: 4000000 2323208 .

8200000 0000000 . enooooo: 4595895

9200000 40000000 L Bo0000: 000000k ...

10 ...100000c 40000000 2000000 .. 1228234 .

11 ..1l00oo0 40000000 4000000 .. IEoedES .

12(...AZ200000 40000000 8000000 k=
LR I | U S S S S —
: w
PRI | e

Conductivity data entered into a data window. Note the auxiliary column 1, providing a unique number for
each data point.

Now we define a functiog = F(x) that returns the conductivity as ytvalue (see Chapter 9, “Defining
functions and programs”, on how to define your own function) and takesithieer of the data point
(in column 1) ax-value. When this function is called with a given value,aof looks up the values of
temperature and intensity (i.e. the valuesyprandy,) from columns 2 and 3 of the current data
window. Then it calculates the conductivity according to our mades | exp(—Ty/T):
function conductivity;
begin

y = a[l1] * data[x,3] * exp(-a[2])/data[x,2]);
end;

Note that data[x,3] is the value of the x-th cell of the third column in the data window that was chosen
for fitting, data [x,3] is the intensity and data[x,2] is the temperature.

Now we can fit this function to our data. We use the first column asvitddue and the conductivity
column as ity-value. Before fitting, don’t forget to set reasonable starting values for the parameters (in
this case most positive numbers will do). The fit returns a[1] = 2.2 and a[2] = 330.

The general idea of this method is to replace a funétignx,... x,) by a single valued functidf(x)
which takes an index as its x-value. From this indegan find the cells in the current data window
where the values .. Xp are stored. Once, .. Xp are knownF can calculaté(xq ... xp).

Multiple functions with one x-value

Another special case that we can easily lead back to the form y = f(x) is the case of multiple function:
with onex-value. These functions can share one or more common parameters.

y1 =f1(x) ,
y2 =f2(x) ,

Fitting 8-21

yq =fq(x)
One method to transform this problem into a “fittable’ form is the following:

Let us assume that we hax@alues ranging between 0 and 1000. We now define a furictibthe
form:
f,(X) if x=0..999 0
_ sz(x -1000) ifx= 1000..1999%
@;(x —-2000) ifx= 2000..2999§
C.

Now we can enter thevalues of our points in the first column of our data window ang-alues in
the second column. The firlsly rows (whereNq is the number of data points we haveffgrcontain
the values ok in column 1 and the corresponding values/pfin column two. The nex, rows
(whereN, is the number of data points fig) containx+1000 in the first column ang, in the second
column., and so on. In this way we have reduced a set of multiple functions to a single function.

When fitting multiple functions, it is very important to specify the standard deviations of

they-values of each function. The reason for this lies in the fact thgtwhkies for each

function may have a different order of magnitude. H.gnight return values in the order

of 1010 while f2 returns values in the order of 1. If you do not specify the error range of
o they-values, the fitting algorithm weights them all equally and a given deviation of a data

point from the functiorf1 has the same weight as a deviation frigmFor most cases,

however, it would be more reasonable to give a stronger weight to deviatiorfs tiean

to deviations fronf1. This can be achieved by specifying percentage errors in the Fitting

Setup dialog box.

Multiple functions with multiple x-values
This is the general case as described in the equations
y1 =f1(x1, X2 ... Xpq)
y2 =f2(x1, X2 ... Xpy)
yq = fg(x1, X2 ... qu)
We have a set af functions. Each function has a certain numbetwadlues (which do not need to be
the same for all functions). The functions share some parameters that you would like to fit.

The solution to this kind of problem is a combination of the two methods explained above. We define &
single valued functiorP(x) that takes an index as its argumehtreturns the value of one of the
functionsfq ...fq for given x-valuesxj .. qu). Thex-value of @ tells

(a) which function of4 ...fq should be evaluated;

(b) for which x-values it should be evaluated;
Thex-values are found in certain columns in the current data window.
Example:

8-22 Fitting

You have two data sets, which are described by two functions. One of these functions hasonly one
value (called), the other has twr-values (calleds andv): f(t), fo(u, v). The functions have some
parameters in common.

The data set foiy consists ohy pairs of valuesty, y1 i}, the data set of, consists oh, triplets of
values 4, vj, yoi}. You also have error estimates for all y-vaIuA;xji().

In order to fit the parameters of all functions simultaneously, you must first choose a method of
arranging the data sets in a data window. We propose to putvdiees into separate columns. All y-
values must be in one column since you will need them for fitting. As-Wadue for fitting you create

an indexk which is constructed from the formula:

k = 1000% i +]
wherei is the number of the function andhe index of the data point in the data set of this function.

This works fine as long as we have less than 1000 points in each data set. Note that this scheme
coding can also be used for more than two functions.

A data list for this problem will be filled up like this:

col. 1 col. 2 col. 3 col. 4 col. 5 col. 6
1001 Vi1 Ay11 t1 up V1
1002 Vi2 Ay to
. . . . Un2 Vn2
1000+n yim Ay1ni tn1

2001 1 Ayo1

The function you define for fitting first converts the index (which isdt&lue) to the number of the
function it has to call (by testing if it is larger or smaller than 2000), then gets the apptomriatendv
values and callfy or fs:

function twoFunctions;
var u,v:real;
begin
if x < 2000 then begin
X := data[x-1000,4];
now calculate y := f1(x)
end
else begin
u := data[x-2000,5];
v := data[x-2000,6];
now calculate y := fo(u,v)
end;
end;

For fitting you use column 1 as tkevalue, column 2 as thevalue and column 3 as the error value.

Fitting 8-23

If you often have to perform this kind of fitting and for a large number of points, it may be convenient to
write a small program that, starting from separate columns for all data sets, creates a data list as sho\
above by merging all y-values and their errors and by creating an appropriate index column.

General hints for fitting

Starting parameters

As already pointed out, the success of a fit often depends critically on the choice of a good set of startin
parameters. Bad starting parameters can cause convergence to a false (i.e. local) minimum of the me
deviationxp. It is good practice to always try to figure out reasonable values for starting parameters.

Redundancy of parameters

Sometimes a fit converges slowly or is even stopped with the cryptic error meAssiggularity
occurred. This can be caused by badly chosen starting values for fitting. However, this error is often
a consequence of poorly defined or redundant parameters. For example, consider the exponenti

function
X=X,
y=AXxex (t O)D+ const
o H

This function has four parameters:xg, tg andconst However, the parametess tg andxg are not
independent, as it is easily seen when writing (5) in factors:

_ 00 =X
= A X ex x ex U+ const.
Y 'ﬁoB Pt

The first two factorsA and expXg/tg)) both have the same influence pnA change ok can be
compensated by a change Af These parameters are redundant. When trying to fit them
simultaneously, the fit fails.

Another problem often encountered during fitting is caused by the ‘poor’ definition of a
parameter. Example: If you are trying to fit the data poir{s=1,y, = 2.01), (2,
3.99), (3, 6.00), (4, 8.02), (5, 9.98), (6, 12.00) to a polynomial of second or higher
degree

y = agtajx+ap@+agd+..,

you will get a very poor estimation of the parameexsq, ... because your data points
are nearly on a straight line and are sufficiently described by the paraspedadas. The
standard deviations of the coefficieats ag, ... will be accordingly large.

The errors of the data set

When using errors (standard deviations) for your data, it is useful to keep some points in mind:

8-24 Fitting

» Multiplying all errors of your data points with a common factor does not affect the results of fitting,
but changes the estimate of the standard deviations or the confidence intervals of the fittec
parameters.

» Changing the relative errors of your data points affects the numerical weight of the data points.
Example: If you have a large number of points in one area (e.g. betwekand 2) and just one or
two points far out (e.g. at = 50), it is necessary to decrease the error for these ‘lonely’ points if
you want to force the function to come close to them.

* When plotting a curve in a graph with a logarithiyaxis, a deviation of the curve from a small
value appears much larger than the same deviation from ayavgkre. If this astonishes you, it is
probably because your measurement errors are proportional to the measured value. When plotting
fit on a graph with a logarithmic y-axis, the errors ofyhare often given in percent. This results in
smaller deviations from points with small y-values. Here is an example of logarithmically plotted
data with fits using percentage errors and constant errors.

106 - -

103

100 \ \ \

A fit with percent errors gives a more satisfying visual agreement between curve and data. Obviously
for serious data fitting you should always specify the real measurement error you expect for every dat
point.

Fitting 8-25

9 Defining functions and programs

proFit allows you to definéunctionsandprograms
« A function is added to the menu ‘Func’. It behaves like any oHs built-in functions and you
can use it for fitting, plotting, etc., see Chapter 5, “Working with functions”.
« A program is added to the menu ‘Prog’. A program performs a sequence of tasks. Programs can b
used for scripting pro Fit.

Both, functions and programs, can be defined in the same syntax, which is based on the Pasc
programming language. In addition to this, programs can be written in Apple Script.

All commands that can be given to pro Fit using its menus, can also be issued through pro Fit's prograt
definition language or through AppleScript. You do not need to know much about the syntax of these
“programming languages” in order to do this. The command that corresponds to any user-action can k
generated automatically by switching on “recording”, either in pro Fit, or in Apple’s Script Editor, or
other equivalent scripting utilities.

Programs can be considered to be “macros” that can be used to automatize tasks. Howekdr, a pro
program can do much more than what you would normally expect a macro to do, such as complicate
calculations and data transformations.

Here is a small list of what functions or programs can do:

e Calculate any kind of numerical value, even if it cannot be expressed in a closed mathematica
formula.

» Access the data in a data window, write results into the results window, use dialog boxes and ale!
boxes.

» Execute any command from pro Fit's menus, open and save files, create and close windows.

* Run fitting operations and predefined numerical algorithms and retrieve their results.

» Create graphs and other drawings in a drawing window using a precise, floating point coordinate
system.

Note: All the above can also be done from an external module — a piece of code generated by your f:
vorite compiler. If you are used to programming your own code for data or function analysis,
you can consider pfeit as a big library offering routines for numeric analysis, data
input/output and high resolution graphics. Information on how to define external modules is
found in Chapter 10, “Working with External Modules”.

When you are defining your functions and programs withirFgrahey are translated (‘compiled’) into
native computer code when they are added té-pomenus. This code can be executed very quickly
by your Macintosh.

Simple programs and functions can be defined very easily and quickly.

Even very complicated programs can be defined without much work by simply recording your activities
using pro Fit's automatic macro recording feature.

This chapter first gives a short overview on the principles of programming kitplothen explaines
the automatic macro recording feature, and finally it lists the features &itjgduilt-in compiler in
detail. At the end, it explains how to save programs and functions as modules for later use.

Defining functions and programs 9-1

Simple examples

Defining functions
Imagine you want to analyze a function of the form
y = asin(xX)xIn(x) +b (8.1)

with the parametergsandb. To define it in prd-it:

1. Choose ‘New Function’ from the File menu.

This opens a new, empty function window.

[0 == untitled Function 2 == 0 H

(&I [=]| (To enu] [pebug | Hetp (£ Ennst[zﬂ
| -

S|

Browse | 4 |M | b

2. Enter the formula of your function in the new window.

The formula looks as follows:
a[1]*sin(x)*In(x) + a[2]

Use a[1], a[2] for the parameteaasndb.

3. Click ‘To Menu in the function window or choose ‘Compile & Add To Menu’
from the Customize menu.

pro Fit analyses the contents of the window. Since you have entered a simple mathematica
expression using the valuepro Fit assumes that you want to define a function. Your formula is
translated into a Pascal-like function definition, it is compiled and added to the menu ‘Func’.

The function window now shows the Pascal definition of your function:

9-2 Defining functions and programs

[0 = untitled Function 2 ="=— 01 B
[]I=I[#]|(To Menu] [bebug | Help (£) I3nnsﬂ§!|.
function User_Function;
begin [

g = all1l¥sint= 2 lntx2 + qlZ]
end;|
[+ |
Browse |4 [m] e

The new function appears under the name “User_Function” in the menu ‘Func’. It is automatically
selected and the parameters window shows its parameters a[1], a[2].

After adding the function to pit, you can change its parameters in the parameters window. You can
plot the function, use it for fitting, calculate a table of its values, etc. (To view the function in the
preview window, make sure that the option “Show function” is checked.)

The above method is an abbreviated way for entering functions: you simply enter the function’s
expression and pro Fit translates it into a Pascal function definition before compiling it. In many
situations you will, however, want to write or edit the function definition directly. Therefore, let's have
a closer look at it:

function User_Function;

begin

y: = a[l]*sin(X)*In(x) + a[2];
end;

The first word of our example fanction . It tells proFit that the definition of a function follows. The
next word User_Function) gives the name under which the function will appear in the Func menu.

The function’s actual definition is given between the keywbetgn andend. The function’s value is
calculated and then assigned (by:th@perator) to the variable The variablex contains the function’s
x-value andq[1] , a[2] etc. are the function’s parameters.

a is a predefined array that represent the function parameters. The parameters can be accessed by t
index, i.e.a[1] ,a[2] etc. Instead of using[i] for the parameters, you can also use parameter
names of your own by declaring them (as in standard Pascal) in the header of the function. See tt
section “Alternative function syntax” later in this chapter.

Our sample function is not defined for x<=0. If you use it in calculations with negat@ieies, a run-

time error is generated. However, the function converges to y=a[2] for x=0. You may want to expanc
its definition range by defining y(x) = a[2] for all x <= 0. This can be done easily in a new version of
our function:

Defining functions and programs 9-3

function LogSine;

begin
ifx<=0
theny := a[2]
else y := a[1]*sin(x)*In(x) + a[2];
end;

Note that you can insert additional spaces or lines anywhere between keywords.

The new version of the function (which now has the name ‘LogSine’) shows how you can ifise the
statement for conditional execution. It takes the general form

if conditionthen do thiselse do that
‘do this is executed if the condition is metd that if it is not met.

If you work with your function more often, you might want to make sure that the Parameter window
shows reasonable default values for the parameters and a short description of what the function doe
Here is a final and more complex definition implementing this (note that texts between curly brackets
(‘{ and ‘}) are used as comments and are ignored):

function Myfunction;

description
{ text to appear in parameters window }
'x>0: y=Asin(x) In(x) + B,
'x<=0: y=B,

defaults

{ names and defaults for the parameters }
a[l] = 1,active,'A";
al2] := 0,inactive,'B";

begin
ifx<=0
theny := a[2]
else y := a[1]*sin(x)*In(x) + a[2];
end;

When you add this function to pird, its parameters window looks like this:

="mmmm——————— LUser Funclich=a/as8s8s)s8)8 88— B
parameters | | 3 !
’V &= 1.0000000 B =|0.0000000
lected 1
®r00 oy =4 sinlx) Inlx) + B ;E Feted parameter
wi=0:y=Ek

lower limit=[none | [JUse for fitting

In the last version of our sample function two additional elements have been added:

9-4 Defining functions and programs

* A keyword description followed by two texts between quotes ('..."), which appear at the
bottom left of the parameters window.

* A keyworddefaults , which is followed by additional information for each parameter, and takes
the form: a[i] := value, mode, name, lowLimit, highLimit , Wherevalue is the
default value of a parametenode its default fitting mode (it can bactive ’ (i.e. the parameter
will be fitted), ‘inactive ’ (will not be fitted) or tonstant ’ (cannot be fitted)) andame (its
name between quotes (') used in the parameters window). Using the ke\pfeutis , you
can also define a range of acceptable values for a parameter given in the optional paramete:
lowLimit andhighLimit . See the detailed description of thefaults keyword, later in this
chapter.

Once you have successfully defined a function and you have added it to the Func menu, you can save
as a module. A module is a file that contains the computer code for your function and that can be loade
by proFit at start-up, or at any other time. Go to the last section of this chapter for more information on
modules.

Defining programs

Programs are generally used to create or transform data in a data window or for scripting pro Fi
operations. In the following we give some very simple examples of programs.

In a first step, we will write a program that fills the first column of a data window with the powers of
two: 2, 4, 8, 16, etc.

1. Choose New Function from the File menu.
This opens a new, empty function window.

2. Enter the definition of your program in the new window.
Enter the following definition:

program PowersOf2;
var i: integer;
begin
NewDataWindow;
fori:=1 to nrRows do
data[i,1] ;=2 "i;
end;

Note that a program definition starts with the keyworogram followed by its name. After that
we first have a variable declaration for the variahle/hich is of type integer.

The body of our program betwebegin andend starts with the calNewDataWindow, which
tells pro Fit to open a new, empty data window. Then follows a so-daliddop, which takes the
general form

for variable:= startValueto endValuado statement

A for-loop executes its statement for all integer values of its variable between startValue and
endValue. If startValue equals endValue, the for-loop is executed only once. If startValue is larger
than endValue, the for-loop is never executed.

Defining functions and programs 9-5

The end value in our for-loop ilRows , nrRows is always equal to the number of rows in the
current data window.

The statement in our for-loop is an assignment)(to the array elemerdatali,1] that
corresponds to théidata cell in the first column of the current data window. The expre&sion
stands for 2(you can also us#**i instead o2/)

3. Click ‘Add’ in the function window
or choose ‘Compile & Add To Menu’ from the Prog menu.

The program is transformed into computer executable code (it is compiled) and its name appears i
the at the end of the menu ‘Prog.

4. Choose PowersOf2 from the menu ‘Prog’.

The program is executed. It opens a new data window and fills its first column with the desired
values.

Our next example program is somewhat more complex. Imagine you have a data window with som
data in the first column. You want to write a program that fills the second column with the square root of
the values of the first column. You want to take some special cases into account:
« If a cell in the first column is negative, the corresponding cell in the second column should be 0.
« If a cell in the first column is empty, the corresponding cell in the second column should be empty
too.
 If any cell in the first column was empty, the program should give the user a warning when it has
finished.

The program which does this task looks like this:

program MakeRoot;
var i: integer; {the row counter}
doAlert: boolean; {true if a cell}

{was empty}
begin
doAlert := false;
for i:=1 to nrRows do
if DataOK(i,1) then {if cell not empty}
if data[i,1]>=0
then data[i,2] := sqrt(data[i,1])
else begin
data[i,2] := 0;
doAlert := true;
end;
if doAlert then
Alert('Some data was negative");
end;

This program shows some additional features of the definition syntax:
* An additional variable of typboolean has been introduced. foolean variable can take the
valuestrue orfalse which can be used ih statements.

9-6 Defining functions and programs

» Before accessing the data in a cell, we test if there is really a number in this cell. This is done witf
the functionDataOK(r,c) , which returns true if the cell in rosvand columrc contains a valid
number. If the cell is empty or if it contains textDataOK returns false.

* The innermosif statementi{ data[i,2]>=0) has two statements in gése branch. They
are grouped by the keywortlegin andend to make it clear that they both belong to ¢ee
statement.

» At the end of the program ah condition checks whether any data was negative. If there were
negative numbers in the input column, the procedledg is calledAlert takes one argument, a
string (i.e. a text between quotes). It displays an alert box that shows this string. Here is the aler
box that appears in case negative numbers are found when the above program is executed:

some data was negative

|5tup|| I‘JKI

This alert box has two buttons: ‘Stop’ and ‘OK’. If you cliSkop, the execution of your program is
immediately aborted. If you pre€3K, the execution of your program continues. For our sample
program, it will not make any difference if you press Stop or OK: when the programlesatls , it is

at its end anyway.

You can now add the sample progrdmakeRoot to the Prog menu (clichdd in the function
window). Then prepare a data window with some data in its first column and run MakeRoot (by
choosing MakeRoot from the Prog menu).

A shortcut

As mentioned at the beginning of this chapter, you can abbreviate the definition of a function by simply
entering its expression (using x and the parameters a[1], a[2], etc.) in a function window. When yoL
click the button “To Menu” or choose “Compile & Add to Menu” from the ‘Customize’ menu, pro Fit
scans the contents of the text window.Compile & Add to Menu If it encounters a simple expression
using x, it assumes that you want to define a function and adds the corresponding Pascal syntax arou
your expression.

You can use the same mechanism for defining programs. For example, you can simply enter th
following lines in an empty text window:

NewDataWindow;
fori:= 1 to nrRows do
data[i,1] := 2 "j;

When you click the button “To Menu” or choose Add to Menu from the 'Customize’ menu, pro Fit finds
that you have entered the body of a program and that you have used the variable i. It therefore adds t
necessary Pascal syntax and then compiles your program. Your complete program will look like this:

Defining functions and programs 9-7

[0 == untitled Function 2 =—"—F0H
(] =] | (T Menu) [Debug | Help (Z) ':nnstE.ll.
program User_Program;
var i]
bagin

HewlDatak indow ;
for i = 1 to nrRows do
datali, 1] =2 " i;
ehd ;
[
Browse | 4 |||III [|

On-line help for programming

The help menus

When defining functions and programs, you can use a series of predefined names, functions an
procedures. To help you use them, fpitgorovides a popup menu “Help” in the header of all function
windows.

[[] === untitled Function 2="—"=0H
[1] (]| (To_Menu) [vebug | Help (23 const (23] [2]
program User_Program; L_J
uar i

The “Help” popup menu lists all predefined routines, names, and syntax elements that you can use. Tl
items are organized hierarchically. It is easy to find an item by moving the mouse over all the different
headings.

In addition to this, the function window provides a popup menu called “Const” that provides a list of
some of the most important nature constants in science and engineering.

When you move the mouse over an entry in the menus “Help” and “Const”, a help balloon is shown
giving a short description. When you choose an entry and release the mouse, its definition is pasted in
the function window.

You can enable/disable balloon help for these two menus by choosing the entry “Show Balloons” fron
the popup menu “Help”. Note that when choosing ‘Show Balloons’ from the Help popup menu,
balloons are only enabled for the two popup menus — not for any of the other menus or dialog boxes ¢
proFit. To switch on balloons for other parts of pro Fit, choose Show Balloons from the Apple Help
menu (the question mark that appears in the menu bar).

Browsing functions and programs

Navigating a lengthy function or program definition can be difficult. To get a quick overview of your
definition, click the popup menu “Browse” at the bottom left of the function window.

9-8 Defining functions and programs

[0 = DataAnalysis

—HH

E.Elm [bebug | Help [$] Const

program Datafnalysis;
var i, autFile;
Ingnut;

procedure Openlutput;

begin
outFile = CreateTextFilel'myFile’?X;
Ené?gw DataAnalysis
— OpenQutput
begin CloseOQutput
Close CalculateRow
begin...end

[~
S

The menu shows a list of all functions, procedures and programs defined in the file. Choosing an entr

from this list takes you there.

Finding the definition of a symbol

If you want to find the definition of a symbol, variable our command that appears in a function window,
double-click it while holding down the option key. For example, if a function window looks as follows:

D =—————— Correlation

)=

L]

t1 = datali,cal1]l-m=ani;
12 = datali,col2]l-mean;
=11 + =sgrotls;

=12 + L1#tZ;

S22 + =qrit2y;

n
[
LI ||

o= =s120sqrtis11#s22 0,
Selectlindow: 'Result=s"1;

Hriteln;, Hritelnd'set 1;
Hritelni'set 2: column ',col2l;
Hiitelnd ' number of data points:

column

,eol 1

,oount

e
—

Browse | L | |||||I

| k

NN

and you want to know how “SelectWindow” is defined, double-clicking it while holding down the

option key brings up its definition in an Apple Guide panel:

Defining functions and programs

9-9

SelectWindows

procedure SelectWindow(wind: String or Longint)
MMoves the specified window in front of all other
windows, wind is the windowlID or the natne of the

wirudoer,

See alsor FrontWindow, Frontrnostiindows

L‘? Topics [] 1

Automatic Macro Recording

pro Fit 5.1 can “record” most operations that you perform and generate a Pascal program or an Appl
Script therefrom. (Open Apple’s script editor to record your activity as an apple script. See chapter 11
Apple Script, for more information.)

If you do not know how to program a certain action with pro Fit's definition lagnuage, switch on
recording, perform the action you want to program, and look at the recorded commands.

Each text window has record, play and stop buttons:

[[] = Untitled Function 1 =——=HH

[] 1] =] [Debug) Help[$] Const[$]

}‘

The record button is the one with the circle in its center, the stop button is the one with the square, th
play button is the one with the triangle.

To record your actions, click the record button. pro Fit will automatically generate a Pascal script for
nearly everything you do. When you have finished recording, click the stop button. Then you can replay
what you did by clicking the play button.

Alternatively, you can use the commands “Start Recording”, “Stop Recording” and “Run” (or “Run
Selection”) from the Customize menu.

If you only want to run a part of a script, first select it and then click the play button (or choose “Run
Selection”) from the Customize menu. If you don't select a part of the script before clicking the play
button, then the whole script is run. If there are function or program definitions in the midst of the
script, they will be added to pro Fit's menus.

The recorded commands appear at the current insertion point in the text window. You cannot edit the te:
window while it is recording.

9-10 Defining functions and programs

You can record new commands at any place inside an existing program definition. Simply position the
cursor where you want the new commands to appear, and click the “record” button.

Syntax of function and program definitions

This section gives a full description of the elements ofFitts syntax for function and program
definitions.

Information on how to define programs is found under “program definition syntax”. Information on
how to define functions is found under “program definition syn&xd under “function definition
syntax”. You need to look under both headings because the function definition syntax is based on th
program definition syntax. Read the sections devoted to programs to obtain an explanation of all th:
general features that are available to programs as well as functions.

Program definition syntax

The structure of a program definition is basically identical to that of a program in standard Pascal. I
starts with the keyworgrogram followed by the name of the program and a semicolon. Then you can
optionally define some variables, constants, procedures or functions for your own use. The main part c
the program (where the execution starts) is placed betveggm andend at the end of the program.

program myProg: the name of the program, myProg, will appear in the Prog
’ menu.
const ¢ = 3e8: optional, definition of constants and variables.

var u,v: real;
done:boolean;

optional, definition of a local procedure or function used by

i the program.

begin Note that you can call local procedures recursively.
statements...

end;

procedure MyProc;

more definitions of functions or procedures can follow here

optional, the procedure Initialize that is called once when

dure Initialize;] . ;
procedure Inttialize; the program is compiled and added to the function menu.

begin Any initialization of global variables can be done here.
Statements...
end;
begin the main body of the program where execution starts.
Note the ‘;’ after the end.
Statements...
end;

After the title of the program, you can defr@nstantandvariables

The definition ofconstantsis preceded by the keywoednst , which is followed by the name of each
constant, the operator ‘=" (not “:="), and the value of the constant. Example:

Defining functions and programs 9-11

const ¢ = 3e8;
startValue = 22;

Once you have defined the value of a constant, you cannot change it anymore.
The definition ofvariablesis preceded by the keywovdr , which is followed by a list of variables.

var u,v:real;
done:boolean;

Note that you can specify the type of each variable (suckas, boolean). If you omit the type
specification, it is assumed that the variable is of tyge.

Variables and constants that you define in the head of a program can be accessed by all statements wit
the program and the program’s procedures and functions.

You can use any name you like for a constant or variable (as long as it is not yet used for any othe
purpose). It can contain letters and digits but must start with a letter. Examples for names are:

myFunc, xx, JO legal names
2ToX illegal (starts with a digit)
then illegal (reserved keyword)

The same rules apply to the names of procedures and functions (see below).

Following the definition of constants and variables, you can (optionally) define local procedures and
functions. The general form of their definition is:

.. for a procedure:

procedure MyProc(m,n:real; i: integer);
variable and constant definitions ...
begin
Statements, separated by semicolons
end;

.. for a function:

function MyFunc(m,n:real; i: integer):real;
variable and constant definitions ...

begin
statements, separated by semicolons;
myFunc := return value
end;

In this caseMyProc (or MyFunc) is the name of the procedure (function). The name is followed by a
list of arguments in brackets. If the procedure or function has no arguments, this list (including the
brackets) is omitted. In our examples we have three argunmemisiandi together with their type
definitions. If you define a function, the declaration of its return type follows after the argument list.
Then follows a semicolon.

9-12 Defining functions and programs

After the line defining the name of the function or procedure you can define constants or variables usin
the same syntax as described for the program (see above). These items are only known within th
procedure or function.

The statements of the procedure or function follow, encloség@wy andend;
You can call a procedure or function anywhere after its declaration, like this:

MyProc(1.72,3.13,20);
r:= MyFunc(1.71,3.14,10);

Local functions and procedures can also have var parameters. When you change a var paramter, y
change the value of the corresponding variable of the calling function. Example:

program Test;
procedure Increase(var a:Real);
{increase value of a by 1}
begin
a:=atl;
end;
begin
k:=1;
Increase(k); {increases k by 1}
Writeln(k); {writes 2}

end;
If you define a procedure having the naméialize , it is called automatically whenever the
program is added to the menu. Withmitialize you may want to initialize any variables or print

some information into the Results window. Here is an example:

Defining functions and programs 9-13

program DoMyStuff;
var inputColumn:integer;
{where our data comes from}

procedure Initialize;

{prints a description of the program and }

{sets the default value of inputColumn }

begin

Writeln('This program converts a data column’);
Writeln('into normalized units.");

inputColumn:=3; {inititialization}
end; {of initialize}

begin {main part of program}

{ask for an input column, default is the one}
{that was set in initialize}
Input(‘which column?',inputColumn);

{transform data}

end; {of main part}

The above program uses the predefined fun&tfoiteln to output text to the results window and the
function Input to ask the user for a column number. All predefined functions are described in
Appendix A.

Example
Let us look at an example of a fully functional program:

You have a data window that contains data in the first two columns. The first column contains positive
and negative numbers. You are only interested in the positive numbers and you want to delete all row
which have a negative number in the first column.

Here is the program:

9-14 Defining functions and programs

program EliminateNegatives;
var i:integer;

procedure DeleteRow(r:integer);
{deletes the row r and shifts up}
{all following rows}
var m,n:integer;
begin
for n:=1to 2 do
begin
for m:=r to nrRows-1 do
if DataOK(m+1,n) then
data[m,n] := data[m+1,n]
else ClearData(m,n);
ClearData(nrRows,n); {clear last row}
end; {of for loop}
end; {of deleteRow}

begi n {main part of program}
i:=1;
while i <= nrRows do
begin
if DataOK(i,1) then
if data[i,1] < 0 then begin
DeleteRow(i); i:=i-1;
end;
ii=i+1;
end; {of while loop}
end; {of main part}

This program tests all numerical values in column 1. This is doaelmle loopwith general form:

while conditiondo statement

Its statement is executed as long as its condition is true. If you have more than one statement in a whil
loop, they must be enclosed begin andend.

Our example program executes the while-loop for all rows in the data wifabike i <=
nrRows). If a data cell in column 1 and row i contains a negative number, the preEedeteRow
is called, which deletes the rawby shifting all following rows up.

The procedurdeleteRow callsClearData(r,c) , Which is a built-in procedure of pFat.
ClearData(r,c) removes any number from the cell in columand rowr .

In the examples above, we have used the ‘for’ loop and the ‘while’ loop. Let us summarize their use ant
introduce the third kind of loop (the ‘repeat’ loop):

Defining functions and programs 9-15

Loops

proFit supports three kind of loops, two of which we have already seen (for-loops and while-loops).
The third one is the repeat-loop. The loop statements are:

The while-loop
while conditiondo statement

The statement of the while-loop is executed as long as the expression in condition returns true. If mol
than one statement should be executed in the loop, the statements must be enbkxgad bypdend .

The for-loop

for loopVariable:= startValueto endValuedo
statement

A for-loop executes its statement for all integer values of its variable between startValue and endValue. |
startValue equals endValue, the for-loop is executed only once. If the startValue is larger than the
endValue, the for-loop is never executed. If more than one statement should be run in the loop, the st
tements must be enclosedliBgin andend.

An alternative form of the for-loop is

for loopVariable:= startValuedownto endValuelo
statement

In this for-loop the value of the loop variable is decreased by one after each execution of the looy
statement. The loop is terminated as soon as loopVariable < endValue.

The repeat-loop
The last kind of loop is the repeat-loop. Its general form is
repeat statementinti condition

In contrast to the while-loop, the statement of a repeat loop is always executed at least once. After tr
execution of the statement, the condition is tested. If the condition is true, the loop is terminated, else tr
loop statement is executed again until the condition becomes true.

Loop control statements: cycle and leave

You can place the keywotdave into a for-, while- or repeat-loop to exit the loop even if its end-
condition is not yet reached. Example:

9-16 Defining functions and programs

fori:=1 to NrRows do

begin

if not DataOK(i,1) then

begin
Writeln(Empty cell - loop aborted');
leave; { exits the for-loop }

end;

end;

The above example loops through the first column of a data window and does some calculation
(indicated by....). If, however, an empty cell is found, the loop is aborted.

You can place the keyworycle into a for-, while- or repeat-loop to immediately start a new iteration
of the loop. Example:

fori:=1 to NrRows do
begin
if not DataOK(i,1) then
begin
WriteIn(Empty cell skipped");
cycle; {goes to next value of i }
end,;

end;

The above example loops through the first column of a data window and does some calculation
(indicated by....). If an empty cell is found, the calculations are skipped and the loop is continued
with the next value af .

Optional parameter lists

Usually, you pass parameters to procedures and functions using the standard Pascal syntax. F
example, you write

DrawRect(10, 10, 50, 100);
In other words, you pass a value for each parameter and separate the parameters by commas.

However, some of pro Fit's predefined procedures use an “optional parameter list” for passing values
for instance

CloseWindow(window 'Data 1', saveOption dontSave);

In the above example, “window” and “saveOption” are the names and 'Data 1' and dontSave the value
of the parameters that are passed to the procedure CloseWindow. In other words, each parameter he
name that must be passed in front of its value.

The advantage of this calling convention is that you can omit some parameters (if you want to use the
default values). For example, you can call

Defining functions and programs 9-17

CloseWindow(saveOption ask);

In this example, we have omitted the parameter “window” and use its default value (the front window)
instead.

The pro Fit Programming Guide and Appendix A of this manual state which of pro Fit's predefined
procedures use optional parameter lists.

Aborting procedures, functions and programs

Use the keywordHalt to immediately end the execution of a function or program. Use the keyword
Exit for exiting from a local function or procedure to the caller.

The following is an example of a program calculating the sum of the presently selected cells in a dat
window. The program aborts when the selection contains empty data cells. (Note that it uses th
predefined variableselectLeft, selectRight, selectTop, selectBottom which

return the enclosing rectangle of the currently selected data cells.)

program CalcSum;
var row, col: integer; sum: real;
begin
sum := 0;
for col := selectLeft to selectRight do
for row := selectTop to selectBottom do
begin
if not DataOK(row,col) then Halt;
sum := sum+data[row,col];
end;
writeln(sum);
end;

The following program does basically the same as the one above, but the sum is calculated in a loc
function, which is aborted Hyxit :

9-18 Defining functions and programs

program CalcSum;

function SumsSelection:real;
{sums the selected data, returns}
{-1if a selected cell is empty}
var row, col: integer; sum: real;
begin
sum :=0;
for col := selectLeft to selectRight do
for row := selectTop to selectBottom do
begin
if not DataOK(row,col) then begin
SumSelection :=-1;

Exit;
end;
sum := sum+data[row,col];
end;
SumsSelection := sum;
end;
begin
Writeln(SumSelection);
end;

Note: Callingexit from the main body of a function or program has the same effect as etdling

Predefined constants, functions, procedures, and operators

This section lists the operators and the most important predefined constants that are available in tf
definition syntax. An alphabetical list of all predefined functions, procedures and constants is found in
Appendix A.

The following are the most important predefined constants:

Ti(orpi) =3.141592...
true =1

false =0

INF infinity (1/INF=0)

The operators are identical to those that are defined in standard Pascal. In addition, the power opera
(** or”) has been added. The operators — in ascending order of precedence — are:

Defining functions and programs 9-19

S <E<>>= comparison, returning true (1) or false (0)

+-or add, subtract, logical ‘or’
*/and multiply, divide, logical ‘and’
A power (x **y =xty =xY)
not logical ‘not’

You can change the order of precedence of the operators in the above list by using brackets: ‘(" and ‘).

Note that there are two ways for using the power operatgr @nd x*y). They are equivalent. Use
whichever you prefer.

On some machinesg**y = xy is calculated as exp(y In(x)). As a consequence of
this, thexy may not work for negative x and may be slow. Therefore, you should not
use this notation for calculating small integer powers (for exampleguse instead of

o X*¥*2).

Note for Pascal programmers: ~ is used for the power operatdtit gwes not know anything about
pointers and ” is not used for dereferencing.

The order of precedence for the operators is the same as in standard Pascal. But since the
proFit definition language does not distinguish between boolean and real expressions
(refer to the next chapter), this order of precedence provides a dangerous pitfall

[) a>x and b>y will be compiled as (a > (x and b)) >y n
Use brackets to clarify what you want:
(a>x) and (b>y)

Note: Incontrast to some other programming languagkgshe expressions in a composite logical
expression of the form
(condition1) and (condition2) and (condition3)
will be evaluated, even dondition1 returns false.

Function definition syntax

If you want to define a function of your own to use it for fitting or plotting, you must wfil@ction
definition. The structure of a function definition is the same as the structure of a program definition,
but it can optionally contain additional information about the parameters and the contents of the parame
ters window. This additional information is placed right at the beginning of the function definition.

A function definition starts with the keywofdnction instead oprogram . Then follows (optional)
information on the parameters and the parameters window:

9-20 Defining functions and programs

the name of the function, myFunc, will appear in the Func-

function myFunc;
menu.

function myFunc(ampl , freq: real); optional, definition of parameter names that will be used to
access parameters in the function code and as a default
parameter name in the parameters window.

optional, these two strings will appear in the parameters

description -
P window.

'textl','text2";

parameters 4; optional, the number of parameters (max. 64)

optional, the default values for the parameters, their default

defaults i .

_ o mode, parameter-window name, lower and upper limit (see
a[l]: =1.2,active; the Chapter 8,Fitting). If you do not define the defaults for
a[2]: =3.0,inactive, name’; a parameter it will be 0, inactive and limited by -INF and

INF. If you do not define a parameter-window name for a
s parameter its default name will be used.
a[4]:=1,active,T,0,INF; The default name is either the name you define in the
function header (e.g. ‘ampl’) or ‘a]i]'.

a[3]: =2.0,constant;

defaults

ampl: =1.2,active;

freq: =3.0,constant;

const optional, the definition of constants as in standard Pascal.
c =2.997ES;

var optional, variable declarations as in standard Pascal.

temp: extended;

myVar,t: integer;

After this, you can (optionally) define your own local procedures and functions.

Then follows the “body” of the function definition betweleegin andend. In this body, you must
calculate the function’g-value from itsx-value and its parameters. For this, you can use the following
variables:

The input variable, the independent
variable of the function

The output variable, the function’s return
value. It must be set by your function.

a[1] ... a[n] The parameters of the function. Up to 64
parameters can be used.

It is possible to define your own parameter names in the function header and to use your own name

instead of tha[1]...a[n]

Defining functions and programs 9-21

function foo(ampl, freq, phase: real);
begin

y := ampl*cos(freq * x +phase);
end;

If you do this, parameters retain their numbering, defined by their sequence when you define then
(ampl, freq, phase). Thea[i] remain available as synonime{{]=ampl, a[2]=freq,

a[3]=phase) and the parameter numbers can still be used in predefined function such as
SetParamName.

Example 1:

You want to define the function:
y =at In(az x?)

Your definition looks like this:

function logSquare;
begin

y = a[1l]*sqrt(a[2]*cosh(x));
end;

This is a function in its most simple form. If you work with it often, you may want to assign default
values to the parameters. You will also see #pashould not be negative. You might therefore
improve the above definition as follows:

function LogSquare;
defaults

a[l] := 1, active, 'al’;

a[2] := 1, active, 'a2', 0, INF;
begin

y := a[1]*sqrt(a[2]*cosh(X));
end;

The first line after the keywordefaults defines the default value, default mode (active means that
it will be varied in a fit) and name afi. The second lines defines the default value, mode and name
as well as the lower and upper limitagf.

Example 2:

You want to define the function 1.00 - 7
y = ap sincfk—x1) + a2 sinck—x2) , 0.00 JW\#
with sinc) = sin)/x . I R
20 0 20

The value of the function sinc is not defined #&0, but it converges to 1 for - 0. When
calculating sinc, we must test if its argument is 0 to handle this special case.

Since the sinc function is used twice in our example, it makes sense to put it into a local function.

9-22 Defining functions and programs

function DoubleSinc;

defaults a[1] := 1,active,'al’;
al2] .= -20,active,'x1";
a[3] := 1,active,'a2’;
a[4] = 20,active,'x2";

function Sinc(u:real):real; {sin(u)/u}
begin
if u=0 then sinc:=1 {0/0 is illegal}
else sinc:=sin(u)/u;
end;

begin {“body"}
y := a[1]*sinc(x-a[2]) + a[3]*sinc(x-a[4]);
end;

Alternative function syntax

pro Fit 5.0 provides an alternative method for defining the parameters of a function that allows you tc
use any desired (legal) name for your parameters. In this syntax, you add the parameters in parenthe
after the name of the function. Example:

function MySine(amplitdue, frequency);
begin

y := amplitdue*sin(frequency*x);
end;

The first parameter in the list will correspond to parameftdr , the second one &j2] , etc. You can
then refer to each parameter either by using its namel{tude, frequency) or by usinga[i] ,
wherei is its number in the parameter list (efl] for amplitude ,a[2] for frequency).

Special procedures in a function definition

As in a program, the procedures that you define within a function definition can have any valid name
you want. However, there are some reserved names for special procéuitis¢z€, Check,

First , Derivatives, Last) that you can define to customize and optimize your function
definition. These procedures are called to perform special actions. For example, one of then
(Derivatives) is called to calculate your function’s partial derivatives. AnotBee¢k) can check a

value that was entered into the parameters window.

The following describes these special procedures. A summary is provided at the end of the section.

Function Check

This procedure is only used to include some advanced features in your function. It can make functiol
definitions more user-friendl{Check is called each time the user changes a parameter in the parameters

Defining functions and programs 9-23

window. It can check the parameter that was changed and act accordingly. For example, it can refuse
parameter if its value is not acceptable. It can also recalculate some other parameters and cause 1
parameters window to be redrav@heck can use the following predefined variables and constants:

pNumber The number of the modified parameter

a[l] .. a[n] The parameters as they appear in the parameters window.
They can be checked and/or changed.

mode[1] .. The mode of each parameter, which can be active
mode[n] inactive or constant . You can check and/or change

the modes.

active, inactive, These three constants can be used to be compared to or

constant assigned to mode]i]

check The function must store its return value in this variable.

ok, bad, update One of these three constants must be returned in the vari-
able check.

Check must return one of the valuek, bad orupdate in the variableheck to tell proFit if it
should accept the new parameter and what it should do with the parameters window:

» If check =0k, proFit accepts the new parameter.

 If check =bad, proFit refuses the new parameter and shows the old one in the parameters window.

 If check =update , proFit accepts the new parameter and redraws (updates) the whole parameters
window. Use this feature whenever you have changed a parameter othegPiRamber] in the
functioncheck , so that the user can see these changes.

For example your function can have two parameters that represent the same value in two different uni
of measuremen€heck can be used to update the value of one parameter when the other parameter i
changed.

Note for advanced userGheck is not called during fitting. It is called once when fitting

is complete. Don’t us€heck for calculating intermediate results for later use in the

evaluation of the function. You won't notice anything wrong as long as you modify the

parameters in the results window, but your function will not work when fitting. Always
o use the proceduiéirst (see below) for calculating intermediate results.

Procedure Initialize

This procedure is used for advanced programming. It is called exactly once after compilation of your
function or program. You can use this procedure to initialize the value of variables or to write some in-
structions into the Results window.

Procedure Derivatives

This procedure is optional. If defined, it is used during fitting with the Levenberg-Marquardt algorithm.
This algorithm uses the partial derivatives of the function with respect to its parameters. If you do not
define the procedur@erivatives , the derivatives are calculated numerically, but this slows down

9-24 Defining functions and programs

the fitting process considerably. If you notice that fitting is particularly slow, you should define this
function and at least calculate some derivativesRKpmill still calculate numerically any derivative you
don’t define). The procedure derivatives can use the following predefined variables:

X The x-variable, the function’s x-value
a[l] .. a[n] The parameters of the function.
dyda[1] .. dyda[n] The partial derivatives. Must be set to dydali] := of(x)/da]i]

for all parameters that are not declared as constant.

Derivatives can set the valuedydali] for some or all of your function's parameters. If you
don't set a value, it will be calculated numerically.

Whenever a function is used by ity a call to the procedui@erivatives is always preceded by a

call to the main part of the function. Therefore you may use temporary results from the main part of the
function by storing them into global variables. This decreases the number of calculations your functior
must perform and makes fitting faster.

Example: You want to fit the function y 3-ainh(x), the partial derivative of whichadg/dag = sinh(x).
Calculating sinh(x) can take a lot of time, especially when you are working on a slow computer. To
avoid calculating expressions twice, you can save temporary results in the main part of the function t
use them later in the procediDerivatives

function MySinh;
var t: real;

procedure Derivatives;
begin

dyda[1] ;= t;{ use t calculated in body}
end;

begin {the function’s bodys}
t := sinh(x); {save sinh for derivatives}
y = a[l]*t;

end,;

Procedure First

This procedure is used for advanced programming. It is called whenever the parameters of a functio
have been changed — before the body (main part) of the function is called. The body of a function wil
never be called withodirst having been called beforehand.

The proceduréirst can use the following variables:
a[l] .. a[n] The parameters of the function.

The proceduré&irst is mainly used for accelerating calculations that do not depend on the input value
X. This can make a fit considerably fasteirst should calculate all expressions that appear in a
function but that do not depend xin

Defining functions and programs 9-25

To calculate the mean deviatigp during fitting, praFit calculates the function for each data point
(Xi, vi)- This may involve up to several thousand executions of the body of the function definition. If
your function definition contains expressions that do not depend on the val(®ioh as sin(a[2]-
a[3])), they will still be recalculated for each new value,aivasting a lot of time. You can evaluate
these expressions in the procediinst and store their values in variables used by the main part
of the function.

Another use of the procedurest is to perform some task before piibstarts to use a function. This
is less common for functions defined inside fpitdout it is often used when defining external modules
(see Chapter 10) that need to allocate and deallocate memory only used while a function is running. Tt
following is a small example of this particular usé-o6t that also demonstrates a possible use of the
procedurdast
function Foo;
var firstTime: boolean;
datall: extended,;
sinDiff: extended;
multiplier: extended,;
procedure Initialize;
begin
firstTime:=true; {initialize to true}
end;

procedure First;
begin
if firstTime then
begin {the statements in this block are }
{executed only once, before any other}
{function call.}
firstTime:=false;
datall:=data[1,1];
{perform here other calculations that}
{do not depend on parameter values}
{and do not depend on x}
end;
sinDiff:=sin(a[2]-a[3]);
multiplier;:=datall*a[1];
{perform here other calculations that do not}
{depend on x but depend on the parameter}
{values.}
end;

procedure Last;

begin {finished using function.}
firstTime:=true; {reset firstTime to true }

end;

begin {the main part of the function.}
y := multiplier * sin(x)/sinDiff;

end;

9-26 Defining functions and programs

The above example uses the procetlast :

Procedure Last

This is also a procedure used for advanced programming. It is called when all calculations, fitting, etc
are completed. It is the last piece of function code called blyipb&fore returning control to the user.
Last can be used to clean up, to make final calculations, or to re-initialize some variables to their
starting values, as is shown in the example above. Last can also be used to print some special messa
or results in the results window or to alert the user of some event. For example, you can let you
machine beep when fitting is finished:

procedure Last;

begin

beep;
end;

Summary
The following table summarizes the special procedures listed above:

name called when predefined variables and constants
Check whenever parameters are pNumber
changed by user a[1] .. a[n]

mode[1] .. mode[n]
active. inactive, constant
check, ok, bad, update

Initialize
First
Derivatives
Last

function’s main
part

once after compilation
whenever parameters are
changed (e. g. during
calculations)

during fitting, after calling
the function’s main part
when calculations are
through

during fitting and other
calculations

a[1] .. a[n]
a[1] .. a[n]
X, a[1] .. a[n]

dyda[1] .. dyda[n]
a[l] .. a[n]

X, Yy, a[l] .. a[n]

Note that in addition to the specially predefined variables and constants, all procedures (as well as tt
function’s main part) can use the general predefined variables, constants, functions and procedures list

in Appendix A.

General comments about programming

Types

The prdFit definition language supports the following types for variables:

Defining functions and programs 9-27

1. Simple numeric types:

real, extended integer, longint, orboolean These types are not distinguished by pro Fit and are
implemented as floating point numbers.

The boolean valu&ue is represented by the real value 1.0 taige by 0.0. All non-zero values are
interpreted as true in a boolean expression.

Most Pascal compilers on the Macintosh distinguish between the floating pointetyjgesied
double andreal, which have different accuracy. All simple number types of th&ipaefinition lan-
guage have extended accuracy. The accuracy and range of numerical valudsitis @iven in
Appendix C.

2. Complex type:

The Complex data type is used to represent complex floating point values having a real and an
imaginary part. Example:

program ComplexTest;
var c: Complex;

begin
c:=-1
writeln(sqrt(c));

end;

The above program recognizes that sqrt is called with a complex argument. Therefore, a comple
version of the square root function is used, which can handle sqgrt(-1). The output of the above prograr
IS:

0.000 +i*1.000

Type conversion from real (or other simple numeric types) to complex is automatic. For converting
complex numbers to real, use one of pro Fit's predefined functions, saich, ahase, re, im

(see Appendix A). To define complex numbers, use the predefined funotigol or the predifined
constanti , which fulfills sqr(ii)=-1

All predefined functions in pro Fit, such sis, cos, gamma, erf, etc. automatically become
complex valued functions if they notice that their argument is a complex number, and return complex
numbers as a result.

3. String and char types:

Use the typeChar for representing simple characte®&ring for representing strings of up to 255
characters. Example:

9-28 Defining functions and programs

program StringAndCharTest;

var c: Char;
s: String;

begin
c:='X}
s := 'hi there';
writeln(c); {writes "c"}
writeln(s); {writes "hi there"}
s:=s+' Joe’; {s now is "hi there, Joe"}
¢ :=9g[2]; {c now is"i"}

end;

Conversion between Strings and Chars is automatic. For conversion between Char (ASCII values) ar
Integer use the function®rd andChr. For conversions between Strings and numbers, use
NumberToString andStringToNumber

To access the n-th character in a stangses[n] . In other words, strings are arrays of type char.

The following is a list of the most important functions for working with strings:

Length Returns the length of a string.
Pos, Delete Find/ delete a sub-pattern in a string
UpperString, Convert between upper and lower case strings.

LowerString
See Appendix A for a complete list.

Arrays
pro Fit allows the definition of one-dimensional arrays. The following syntax is used:
var namearray] minindexmaxindexof type

Wherenameis the name of the arraminindexis its minimum indexmaxindexs its maximum index,
typeits type. Since types are ignored by pro Fit, you can ahit type' in the declaration.

To access an array, use the syntax:
name indeXy

Example:

var arrl: array[1..10] of real;
arr2: array[0..100];
[
fori:=1to 10 do arrl[i] := 0;
arr2[33] .= 22.1;

Note: the maximum size of all variables in a variable list is limited to 32 kBytes. This limits the size of an
array to about 2700 entries for the FPU version of pro Fit, to about 3200 entries for the non-FPU
version, and to about 4000 entries for the Power Macintosh version.

Multi-dimensional arrays are not supported.

Defining functions and programs 9-29

The compiler

When adding a definition to the list of functions or programs oFftréhe definition text is translated
into machine code that can be executed by your computer. This results in a very fast execution speed
programs and functions.

D D
functions programs

y ;= a[1]*sin(x) for i:=1 to 10 do|
datafi,1] := 0;

compiler

Y

code

00FA 2CC3
3008 299S
8001 FF29

The translation of your definitions into machine code is carried out when you choose Add to Menu from
the Prog menu or if you click the button "Add" in the toolbox of the function window.

Any changes that you make to your definitedter compilation will not affect the function or program as
it was added to préit's menus. To update your changes, you must choose Add to Menu again.

Debugging

proFit offers a special debugging facility which helps you track down run time errors in your code. If
you checkDebug in the function menu or click the small check box in the header of the function
window and compile your definition (‘Add to Menu’), special instructions are added to its code. They
allow to identify the position where a run-time error (such as sgrt(-1)) occurred. These additional
instructions make the execution of your program or function slower, so you should uncheck Debuc
when you have finished correcting the function.

If you check debug and recompile your definition (Add to Menu from the Prog menu), the next time the
error occurs, its position in your definition will be highlighted.

Note that a function compiled with debug option on appe#l&ed in the Func menu.

Comparison to standard Pascal

The programming language used to define functions and programskhit gralosely related to the
Pascal programming language. However, to keep it simple and to allow the generation of fast code
some restrictions are present. The most important differences to standard Pascal are:

* You cannot define your owtata types

9-30 Defining functions and programs

« All numeric types (except complex) are interpreted as floating point numbers. Boolean expression:
are evaluated as floating point numbers (a 0.0 represdatigg , any non-zero value representing
true). Norecords, structures, or pointers are supported.

* Arrays are one dimensional.

» Casestatements are not supported.

» Nested declarations of functions or procedures are not supported.

External functions and programs

Even though pré&it's definition language is very powerful, it does not offer the full versatility of a
special purpose programming language. It only supports one dimensional arrayslatafept),
records, pointers, etc. In addition, it does not support access to the Macintosh toolbox routines. If you
do need any of these features or if you want to write a large program or function Fatr wieere
execution speed is crucial, you should write your definition in any compiler of your choice and add the
generated code to pat. This process is called ‘writing an external module’. See Chapter 10, “Working
with external modules” for details.

Using pro Fit Modules

After you have added a function or program to the menus, you can save its compiled code as a sepatr:
file for later use. This file is calledrmodulebecause it is a self-contained unit that can be used to
customize pré&it's menus.

You can also create modules in an external compiler. These modules aregtdle@lmodules. pré&it

comes with a set of external modules for different tasks. You can use them to add functionality to you
copy of praFit according to your needs. See Chapter 10, “Working with external modules” for an
explanation on how to build external modules.

This section explains how to use such modules.

, _ Lininterpol...
Saving functions and programs

Slow...
To save a function or program as a module, ch@msee User_Function...
Module from the Customize menu to see a submenu with
the functions and programs that can be saved as modules. test...

Lser_Program...

This sub-menu has two sections divided by a horizontal line. The first section lists the functions, the
second section the programs. Choose the function or program you want to save as a modulEitand pro
will ask you where you want to save it. Note that you can only save functions and programs that yot
compiled in pro Fit — you cannot save built-in functions or external modules.

The resulting file is a prit document. You can load it by using the Load Module command or by
double clicking it from the Finder.

Loading functions and programs

Choose “Load Module...” from the Customize menu to load a module. You are asked to locate the
module.

Defining functions and programs 9-31

The command “Load Module...” can also be used to load compiled Apple Scripts. See Chapter 11
“Apple Script” for details.

Removing functions and programs from the menus

To remove a function or a program (or an Apple Script) from pro Fit's menus, choose “Remove from
Menu” from the Customize menu. A submenu lists all the functions and programs that can be remove
from the menus. Select the name of the function or of the program you want to remove.

Note: you cannot remove any of piv's built-in functions (Spline, Polynom, etc.).

Loading modules automatically on startup

Imagine you have one or more modules or Apple Scripts that you use often. You can make then
available automatically whenever you startfgito

Put the modules you want to add permanently td-pirimto a folder named “pro Fit Modules”. This
folder must be located in the same folder adit® or in the Preferences folder of your System Folder.
(When you create the folder “pro Fit Modules”, type the name exactly as given here, otherwise pro
will not find it.)

Whenever préit starts up, it checks if a folder named “pro Fit Modules” is located in the same folder as
the application itself and tries to load all modules it finds there. Thedfitdomks for a folder “pro Fit
Modules” in the Preferences folder of the System folder and again tries to load all modules it finds there

If you are running pr&it directly from a server, the modules found in the “pro Fit Modules” folder in
the application folder on the server will be available to all users, the modules in the “pro Fit Modules”
folder of your system’s Preferences folder will only be available to you.

Loading a set of modules together with a new preferences file

In multi-user environments different users might want to use the multi-preferences-file mechanism
provided by prd-it.

The praFit preferences file holds the default settings and other information for maRit’graptions.
Different users may want to use different preferences filesziprmrmally uses the preferences file
found in the Preferences folder inside your System folder. It is possible, however, to skirtogro
double clicking another preferences file, or to switch to a new preferences file wiilé ipnm use by
choosingPreferences..from the File menu. This allows each user to use his own set of preferences.
See Chapter 13, “Preferences” to learn how to use preferences files.

proFit provides a mechanism that allows users to load their favorite modules together with their
preferences file: whenever a preferences file is openeditplooks for a folder named “pro Fit
modules” in the same folder as the preferences file and loads all the modules it contains.

To take advantage of this mechanism, simply put your preferences file and pro Fit Modules folder inside
a common folder.

9-32 Defining functions and programs

ECJ=—= Charles =—[1|

2itern= 1973 MB in disk a7 MEI
ir

— F

pro Fit rmodules

<
o]

Whenever pré&it opens the preferences file, it also loads all the modules found in the “pro Fit modules”
folder.

Defining functions and programs 9-33

10 Working with external modules
This chapter explains how to a@xternal moduleso proFit. External modules are documents
containing the computer code for a function or program.

proFit comes with a number of ready-to-run external modules containing useful functions or programs.
The next section tells you how you add them toHiro

See the sections “Creating an external module” and “Writing an external module” for a detailed
explanation of how to create your own external module.

Loading an external module

To add an external module to it

1. Select Load Module from the Misc menu.
You are asked to locate your module:

2. Choose the external module you want to load and click “Open”.

proFit checks if an external module can be found in the file you have selected. If yes, it is loaded. If
the module is a function, it is added to the Func menu. If it is a program, it is added to the Misc
menu.

Instead of loading a module by choosing Load Module, you can double-click its file. (For this, the ‘file
type’ and ‘creator’ of the file must be ‘tCD’ and ‘NLft’, respectively).

An important note for Power Macintosh users:
If you have loaded a module and you subsequently change it (e.g. by recompiling it) you
mustremove the loaded module from prd-it before loading its new version

To load your modules automatically at start-up, put them into a folder called “pro Fit Modules” located
in the same folder as the application itself or in the Preferences folder of the System folder. See the er
of Chapter 9, “Defining functions and programs”, for a more detailed discussion of how to work with
proFit modules.

The rest of this chapter explains how you can write external modules using your own compiler.

Creating an external module

You need the following to write an external module:

« Some experience in programming.

« A compiler (such as ThifR Pascal, Think C, Symante®h C++, Metrowerk® Pascal,
Metrowerk&® C/C++, or the Macintosh Programmer Workshop™ (MPW)). Your compiler must
support the generation of code resources (for 68k computers) or shared libraries (for Powe
Macintosh).

Working with external modules 10-1

To create an external module, proceed as follows:

1. Choose a stationery file to start from and save it under a name of your
choice

In your praFit distribution package, you will find a number of stationery (template) files that contain
“empty” functions or programs:

ProgramTemplate.c for creating an external program in C
FunctionTemplate.c for creating an external function in C
ProgramTemplate.p for creating an external program in Pascal
FunctionTemplate.p for creating an external function in Pascal

Open the stationery from your programming environment and save it under a name of your owr
(e.g. “xxx.c”).

Note: you should never modify the files ProgramTemplate.c/p or FunctionTemplate.c/p directly —
always work on a copy.

2. Complete the code

Since the stationery files only contain empty routines, you must fill in your code. The following
section “Writing external modules” tells you how to do this.

3. Build your code

Note that in addition to the code defined in your file, you must also compile the file
“proFit_interface.c” or “proFit_interface.p”, respectively, which contains glue code for calling
proFit's routines.

If you are using C, please note that “proFit_interface.c” as well as your own source file xxx.c
#include the files “proFit_interface.h” and “proFit_paramBlk.h”. Therefore, these files must be in
the “search path” of your compiler (they could e.g. reside in the same folder as the ...c files).

If you are using Pascal, note that your own source file “uses” the unit proFit_interface defined in
proFit_interface .p.

3. Build the module
The module should be created in a file having the type “ftCD” and the creator “NLft".
If you are building a module forRower Macintosh

Set your compiler/linker to build a “shared library” or “import library”. The entry point of your
module is the function “main”, which must be exported from your library. Consult your
compiler’s manual on how to export symbols from a library. (The example source files contain
compiler options for exporting “main” in one of Metrowerks’ compilers. Note that these compiler
options may not work correctly with other compilers.)

If you are building a module for@8k Macintosh (i.e. an “old” non-Power Macintosh):

Set your compiler/linker to build a code resource of type “NLft”, with a resource ID greater or
equal to 128.

The entry point to your code must be at the beginning of the code resource.

10-2 Working with external modules

If you are creating a module for the FPU-version offitoset your compile options to create
code using the FPU with 12 byte ‘extended’ (Pascal) or 'double’ (C) variables.
If you are creating a module for the non-FPU option oHitro/ou must set your compile options

to not create code for calling the FPU and to use 10 byte ‘extended’ (Pascal) or 'double’ (C)
variables.

4. Link the module to pro Fit

To do this, either double-click the file you have built or load it fromRirdy choosing Load
Module... from the Misc menu.

The following gives some hints for creating modules with some of the most common compilers. Note
that there are sample “project” and “make” included with the pro Fit package.

Metrowerks Code Warrior Pro for Power Macintosh
If you are using Metrowerks Code Warrior Pro or the Power Macintosh, create a project with the files:

MathLib Mathematical routines

MSL RuntimePPC.lib runtime library for Metrowerks projects
InterfaceLib system routines

proFit_interface.c glue for interfacing with pro Fit

XXX.C Declaration needed to define a pro Fit function

MathLib, MSL RuntimePPC.lib and Interface.lib came with your copy of the Metrowerks C/C++
compiler, proFit_interface.c can be found in your distribution package. “xxx.c” is your source code
created from “ProgramTemplate.c” or “FunctionTemplate.c”.

Make sure that the files “proFit_interface.h” and “proFit_paramBIk.h” reside in the same folder as your
project.

Many mathematical functions (such as sin(), log()) are not part of the standard C function set. In order t
use them, use <fp.h> and <fenv.h> (the header files for the Power Macintosh numerics environment).

Metrowerks Code Warrior Pro for 68k
If you are using Metrowerks Code Warrior Pro for 68k, create a project with the files:

MathLib68K (..).A4.Lib Mathematical routines

MSL C.68K (..).A4.Lib Metrowerks standard library

MSL Runtime68K.A4.Lib runtime library for Metrowerks projects
MacOS.lib system routines

proFit_interface.c glue for interfacing with pro Fit

XXX.C Declaration needed to define a pro Fit function

"(..)" stands for:
"(2i)" if you are building a module for pro Fit (68k)
"(2i_F)" if you are building a module for pro Fit (fpu)

Working with external modules 10-3

The library files came with your copy of the Metrowerks C/C++ compiler, proFit_interface.c can be
found in your distribution package. “xxx.c” is your source code created from “ProgramTemplate.c” or
“FunctionTemplate.c”.

Make sure that the files “proFit_interface.h” and “proFit_paramBIk.h” reside in the same folder as your
project.

Many mathematical functions (such as sin(), log()) are not part of the standard C function set. In order ts
use them, use <fp.h> and <fenv.h> (the header files for the Power Macintosh numerics environment).

Note: If you cannot find some of the libraries (such as “MSL C.68k (2i-F).A4.Lib"), you can rebuild
them using the application “Build MSL Libraries”, which you will find in the folder “(Build Scripts)” of
the Metrowerks Standard Library.

In the target settings “68K Target” of your project, you must set the Project Type to “Code Resource”,
Creator to “NLft", Type to “ftCD”, ResType to “NLft", ResID to any value larger than 127. Leave
SegType empty. Check “Extended Resource”. Set Header Type to “Standard”.

In the target settings “68K Processor” you must uncheck “4-Byte Ints” and “8-Byte Doubles”. Set
Floating Point to “SANE” if you are building a non-FPU module or to “68881” if you are building an
FPU module.

Think C or Symantec C++ (for 68k)

If you are using Think C or Symantec C++ (Version 7.0.x for 68k), create a project containing the files:

MacTraps Glue for many Macintosh system routines
proFit_interface.c Glue for interfacing pro Fit.
XXX.C your code

“MacTraps” came with your copy of Think C and proFit_interface.c can be found in your distribution
package. “xxx.c” is your source code created from “ProgramTemplate.c” or “FunctionTemplate.c”.

Make sure that the files “proFit_interface.h” and “proFit_paramBIk.h” reside in the same folder as your
project.

Many mathematical functions (such as sin(), log()) are not part of the standard C function set. In order t
use them, add the files math.c and errno.c (that came with Think C/C++) to your project and #include
the file <math.h> in your source file xxx.c.

Set the project type to "Code Resource" to create a code resource of type 'NLft' with AR8DSet
the file type to “ftCD”, the creator to “NLft".
Think Pascal (for 68k)

If you are using Think Pascal 4.0, create a project with the files:

DRVRRuntime.lib Glue for many Macintosh system routines
Interface.lib Glue for many Macintosh system routines
proFit_interface.p Glue for interfacing with pro Fit.

XXX.P your code

10-4 Working with external modules

“DRVRRuntime.lib” and “Interface.lib” came with your copy of Think Pascal, “proFit_interface.p” can
be found in your distribution package. “xxx.p” is your source code created from “ProgramTemplate.p”
or “FunctionTemplate.p”.

In addition, you may want to add the SANE numerical environment because it defines many
mathematical functions not available in standard Pascal. To do so, add the following files to your
project:

SANELib881.lib or (with FPU)
SANELib.lib (without FPU)
SANE.p Interface for the SANE routines

All these files come with your compiler.

Set the project type to “Code Resource” to create a code resource of type 'NLft' witk A28DSet
the file type to “ftCD”, the creator to “NLft".

If you are creating a module for the non-FPU version offirgyou must set your compile options so

that they do not create code for the FPU. If you are creating a module for the FPU-versidfitpero

your compile options to create code calling the FPU (and to generate 12 byte extended (or ‘double’ in C
variables).

MPW C/C++ or Pascal for 68k

If you are using the Macintosh Programmers Workshop MPW for compilation on a 68k CPU, you must
make sure that the functiomain (which is defined in proFit_interface.c for C modules and in your own
file xxx.p for Pascal modules) is the first function in your build order. This is important, because when
calling your code, prbit starts executing your code resource from its beginning. Therefore, your code
resource should start with the functiomain or with a jump to this function. Most development
environments add such a jump automatically — MPW doesn’t. Therefore:
« If you are writing an external module in C, make sure that proFit_interface.o is the first file being
linked.
« If you are writing an external module in Pascal, make sure that your own file xxx.o (which you have
created from ProgramTemplate.p or FunctionTemplate.p) is the first file to be linked, because it
definesmain .

MPW C/C++ for Power Macintosh

If you are using the MPW compiler for the Power Macintosh from the RISC SDK, you will find an
example for a “make” file on your distribution disks.

Other compilers
The distribution disks contain several examples of external modules for other compilers.

Working with external modules 10-5

Writing an external module
The following comments apply to Power Macintosh as well as 68k modules.

Note once again that the size of the floating point type ‘extended’ (or double in C) must be
the correct one for the version of b you are working with. For the FPU version it is
12 bytes, for the non-FPU version 10 bytes, and for the Power Macintosh version 8

bytes.
° y

To write your external modules, start from a stationery file (ProgramTemplate or FunctionTemplate) as
shown above. These files contain some routines that you will have to modify.

Routines to be modified

The following table lists the routines defined in ProgramTemplate.c/p and FunctionTemplate.c/p that car
or should be modified by the user. Functions or procedures that are only used by advance
programmers are marked witHa

function name modify if defining a
SetUp program or function
CleanUp T program or function
InitializeProg T program
Run program
InitializeFunc T function
Func function
Derivatives function
First T function
Check T function
Last T function

In the following section, we will first describe the routirietUp andCleanUp that are used for both
types of modules. Then we discuss the routines only used in external programs, then the routines on
used in external functions.

Note for Pascal programmers
In ProgramTemplate.p and FunctionTemplate.p you will find a procedure with thewame
Leave this procedure unchanged — it provides the glue betweEi @anal your routines.

Note for C programmers
The following function definitions are given in Pascal. If you are programming in C, you should
keep in mind that wherever a var parameter is passed in Pascal, the corresponding pointer is passe
in C. If the description text e.g. says that “a value of 1.0 must be returned in the variable y”, the C
code should assign 1.0%p, i.e.*y =1.0 . Further differences between the definitions in C and
Pascal will be highlighted along the way.

All the following routines have a parameter calfdal It is a pointer to a record (struct in C) of type
ExtModulesParamBlock . Most users won't need the information stored in it. Advanced
programmers can refer to the section “Global variables” for more information about data to be accesse
throughpb.

10-6 Working with external modules

Routines to be defined in functions and programs

SetUp procedure SetUp(var moduleKind:integer; var name:Str255;
var requiredGlobals: longint; pb: ExtModulesParamBlockPtr);

This routine is called when your module is linked toRatolt must return the following values:

* moduleKind must be set to the constasProgram if your module is an external program, and
toisFunction if your module is an external function.

* name must be set to the name of your module. If you are programming in Pascal, you can simply
assign a string to it:
name := 'myName'
If you are programming in C, you must make sure that you return a Pascal string. For this purpose
you can use the functio®etPascalStr that is defined in proFit_interface.c:

SetPascalStr(name,"\pmyName",255);

(The last parameter is the maximum length of the resulting string.)

* requiredGlobals should usually be set to 0. Advanced programmers can set it to the size (in
bytes) of a global data buffer they want to have allocatedqtfiredGlobals Is returned with a
value > 0, prdrit allocates a block with the corresponding number of bytes and stores a pointer to it
in pb~.globals (in C: pb->globals). pb is a pointer to a record called
ExtModulesParamBlock and is passed to all routines called byFpto
Note that memory allocated in this way is deallocated automatically when your module is unlinked
from proFit — you must not deallocate this memory yourself!

CleanUp procedure CleanUp(pb: ExtModulesParamBlockPtr);

CleanUp is called when pFat is quitting or when your module is removed from gitoIn most cases,
you won’t have to do anything here. Advanced programmers may wish to deallocate some specie
memory, to close a port or to clean up other stuff here.

Routines to be modified in external programs only

InitializeProg procedure InitializeProg(pb: ExtModulesParamBlockPtr)

This routine is called before a program is run for the first time. Most users can leave it empty. Advancec
programmers may wish to allocate some memory, open a port, initialize global (static) variables, etc
here.

Run procedure Run (pb: ExtModulesParamBlockPtr)

This routine is called when your program is executed. It should hold your program’s main code.

Routines to be modified in external functions only

An important note about parameter indices: When accessing arrays that hold values,
names, etc. of the parameters, suchajads aO.names”[i], mode]Ji],
dydali] ,theindex ranges from 1 to 64 in Pascal, but from O to 63 in C

Working with external modules 10-7

InitializeFunc procedure InitializeFunc(var hasDerivatives: boolean;
var descrlstLine, descr2ndLine: Str255;
var numberOfParams: integer; var a0: DefaultParaminfo;
pb: ExtModulesParamBlockPtr);

This routine is called once after your external function has been linked Fdt.gtanust return some
default values and information about the function. Advanced programmers may also use it for
initialization of global (static) variables, memory allocation, etc.

InitializeFunc should return the following data in its parameters:

» hasDerivates must be set ttrue if you want to calculate some derivatives of your function
with respect to its parameters yourself (in the funcbamivatives described below). Any
derivative you don’t calculate will have to be calculated numerically byFiprdf you set
hasDerivates tofalse , all derivatives will be calculated numerically and the function
Derivatives will be ignored. (The derivatives are used for nonlinear fitting.)

» descrlstLine, descr2ndLine : These two strings are displayed in the parameters window
and should give a short description of your function. (C programmers should use the function
SetPascalStr described unde®etUp , above, for setting these strings.)

* numberOfParams : Here you should return the number of parameters of your function (up to 64).

« a0: This is a record (in C: a pointer to a struct) that defines the default values, modes, names ar
limits of your parameters. You can leave this record unchanged if you want to use the default values
The following table lists the values that can be set in a0 for each parameter i:

Pascal notatiof) C notation?) contains
a0.value”i] (*a0->value)][i] Default value
a0.mode”\[i] (*a0->mode)[i] Default mode, set to active (varied during

fitting), inactive (not varied during fitting), or
constant (cannot be fitted)

a0.name”[i] (*a0->name)[i] Parameter name, a Pascal string of length
maxParamLength . 3)

a0.lowest/[i] (*a0->lowest)]i] The lower limit for a parameter. By default, this
value is -INF.

a0.highest/[i] (*a0->highest)]i] The upper limit for a parameter. By default, this
value is INF.

1) In Pascal, indices for these arrays run from 1 to 64
2) InC, indices for these arrays run from 0 to 63

3 c programmers should set the name by calling the function SetPascalStr ~ with a maximum string
length of maxParamLength . Example:
SetPascalStr((*a0->name)[0],"\pname", maxParamNamelLength);

Func procedure .i.Func; (x:extended; a:ParamArray;
var y.extended; pb: ExtModulesParamBlockPtr);

This procedure is called to calculate the return value of your function. It has the following parameters:
» X: The function’s independent variable.
» a: The function’s parameteggi] . Note that the index ranges from 1 in Pascal but from 0 in C.
e y: The function’s return value to be calculated froranda.

10-8 Working with external modules

Derivatives procedure Derivatives (x: extended; a: ParamArray; var
dyda: ParamArray; pb: ExtModulesParamBlockPtr);

This routine calculates the partial derivatives of your function with respect to its parameters. You can
leave this routine empty if you don’t need it, or you can calculate only some derivatives. You don’t neec
to calculate all of them. pFet will check if you did not calculate a derivative and will calculate it numeri-
cally. SethasDerivatives to false ininitializeFunc if you are sure that you will never want

to calculate any derivatives yourself. (Note that a cdllefvatives with a given x-value is always
preceded by a call dfunc with the same x-value — therefore, you might save a temporary result in
Func for later use iDerivatives . See also Chapter 9, “Defining functions and Programs”.)

Parameters:
» X: The function’s independent variable.

« a: The function’s parameteagi] . Note that the indeix ranges from 1 in Pascal but from 0 in C.
* dydafi] : The partial derivatives to be returned.

First procedure First (a: ParamArray; pb: ExtModulesParamBlockPtr);

This routine is called whenever the parameters a have chaefgedFunc is called. In most cases, you

can leave it empty. Advanced programmers carkFirse for speeding up your function by evaluating
temporary results that only depend on your function’s parameters but not on its x-value (for more
information: see the description of First in Chapter 9, “Defining functions and Programs”).

Parameters:

e a: The function’s parametegdi] . Note that the index ranges from 1 in Pascal but from 0 in C.

Check function Check (ParamNo: integer; var a0: DefaultParaminfo;
pb: ExtModulesParamBlockPtr):CheckPAnswer;

Check is called whenever the user has entered a value in the Parameters window. In most cases, you
leave Check empty, returning the valyeod . Advanced programmers can use it for improving the

parameters window’s user interface. Applications of Check are described in Chapter 9, “Defining
functions and Programs”).

Parameters:

» paramNo: This is the index of the parameter that the user has changed (1..64 in Pascal, 0..63 in C

* a0: This is a record (in C: a pointer to a struct) that defines the default values, modes, names an
limits of your parameters as they appear in the parameters window. The values that you can acce
or change in this data structure are listed under the rdotirzizeFunc above.

Check should return one of the following values:
- good if the new parameter is to be accepted

- update if the new parameter is to be accepted but the parameters window must be redrawr
(because Check changed some value§)n

- bad if the new parameter cannot be accepted.

Last procedure Last (pb: ExtModulesParamBlockPtr);

This routine is called whenever an operation that has used your function (such as a command for fitting

is done. In most cases, you can leave this procedure empty. Applicatlcast ofre given in Chapter
9, “Defining functions and Programs”.

Working with external modules 10-9

Predefined constants and types

When writing an external module, you can (and must) use several predefined constants, types ar
procedures (or functions). In Pascal, they are defined in the interface of the file proFit_interface.p. In C
they are defined in proFit_interface.h and proFit_paramBlk.h. This section describes some of the mos
important things defined in these files.

The definitions in these files should not be changed. Doing so might cause
incompatibilities with the present or future versions offito

General remarks:

» Stringspassed between pfd and an external module are always Pascal strings (and not C strings).
If you are programming in Pascal, you won't have any problems with this. If you are programming
in C, you must remember that a Pascal string must be introducedpby (example:
"\pMyString"). For assignments, you can use the func8etPascalString described
earlier in this chapter.

* Records(structy passed between pFit and an external module always use “68k-alignment”.

Therefore, for compatibility with Power Macintosh compilers, definitions for C structs are always
preceded by

#if defined(powerc) || defined (__powerc)
#pragma options align=mac68k
#endif

and followed by
#if defined(powerc) || defined (__powerc)
#pragma options align=reset
#endif

» Parameter indicesinder Pascal always run from 1rt@axNrParams, in C they run from O to
maxNrParams-1 .

The following lists the most important constants and types.

(The numbers in curly brackets give the offset and size of some records and their components. Pascal
C programmers won’t need this information. It is provided for porting the records to another
programming language. Numbers followed by (N) give the length for the non-FPU 68k version,

numbers followed by (F) for the FPU 68k version, and numbers followed by (P) for the PowerPC
version.)

const
versionNumber = 1;
maxNrParams = 64;
maxParamNamelLength = 31;
maxNrinputValues = 6;
isFunction = 1;
isProgram = 2;

type

10-10 Working with external modules

inputRec = packed array[1..maxNrIinputValues] {size 48}
of record

X: "extended; {offset O, size 4}

S: /str255; {offset 4, size 4}

end; {field size 8, offset 8, #fields 6}

checkPAnswer = (update, good, bad); {size 1}

{update=0, ok=1, bad=2}

ModeType = (active, inactive, constant); {size 1}

{active=0, inactive=1, constant=2}

ParamName = string[maxParamNamelLength]; {size 32}
ParamArray = array[l..maxNrParams]of extended;

{size 640(N)/768(F)/512(P)}
{field size 10(N)/12(F)/8(P)}
{offset 10(N)/12(F)/8(P)}
{#fields 64}

ParamNameArray = array[l..maxNrParams] of ParamName;
{size 2048}
{field size 32, offset 32, #fields 64}

ParamModeArray = array[l..maxNrParams] of ModeType;

{size 64}

{field size 1, offset 1, #fields 64}

DefaultParaminfo = record {size 58}

value: “ParamArray; {offset O, size 4}

lowest: "ParamArray; {offset 4, size 4}

highest: “"ParamArray; {offset 8, size 4}

mode: "ParamModeArray; {offset 12, size 4}

name: "ParamNameArray; {offset 16, size 4}
end;

DefaultParaminfoPtr = ~DefaultParaminfo; {size 4}

type

{parameters for all functions calling pro Fit}

ExtModulesParamBlock = record {size 4}
RunTimeProcPtr: Ptr; {offset O, size 4}
globals: Ptr; {offset 4, size 4}
versionNumber: integer; {offset 8, size 2}
moduleKind: integer; {offset 10, size 2}
codeType: integer; {offset 12, size 2}
name: Str255; {offset 14, size 256}

requiredGlobals: longint;
{offset 270, size 4}
v: array[1..30] of extended; {offset 274,}

Working with external modules 10-11

{size 300(N)/360(F)/240(P)}

dummy: Boolean; {size 1}
hasDerivatives: Boolean; {size 1}
descrl, descr2: Str255; {size 512}
numberOfParams: integer; {size 2}
a0: DefaultParaminfo; {size 58}
paramNo: integer; {size 2}
answer: integer; {size 2}
X, y: “extended; {size 8}
a: "ParamArray; {size 4}
dyda: "ParamArray; {size 4}
globalScratch: GlobalScratchPtr; {size 4}
moduleFile: FSSpec; {size 70}

end;

ExtModulesParamBlockPtr = “"ExtModulesParamBlock; {size 4}

ExtModulesParamBlockH = ~"ExtModulesParamBlockPtr; {size 4}

The most important constants and types are the following:

e versionNumber is the current version of the dfd interface.

* maxNrParams is the maximum allowed number of parameteraxParamNameLength is the
maximum length of a parameter name for a function.

« isFunction, isProgram are possible types of a module to be returne8diyp described
above.

* maxNrinputValues is the maximum number of input variables for the fundinputBox
described below.

* inputRec is the parameter to the functibrputBox described below.

« checkPAnswer is the type of the return value of the functahreck described above.

* ModeType describes the mode of a parameter, as explained in Chapter 9, “Defining functions and
programs”.

« ParamNameholds the name of a parameter as it appears in the parameters window.

« ParamArray , ParamModeArray andParamNameArray are the arrays with the parameters’
values, modes and names.

» DefaultParaminfo contains all the arrays with the initial values, limits, modes, and names of
the parameters.

» ExtModulesParamBlock : This record contains low-level parameters to be passed between an
external module and pFat. In most cases, you will not need the information stored here. There are
only two fields that you might find usefu:andglobals . These are described in the following
section “Global variables”.

» globalScratch : A pointer to a data area shared by all modules, internally defined functions and
programs, as well as external modules. From programs and functions defined within pro Fit, you
can access this area through the predefined giohglData[0..99]

* moduleFile : A file specifier for the file that the module is in. You can e.g. use this specifier for
accessing a resource stored in your module.

Global variables

Global variables (or static variables, as they are often called by C programmers) are variables that rema
statically in memory. Their values are preserved between individual calls to your module.

10-12 Working with external modules

If you are programming for the Power Macintosh, you can define global variables in the way you are
used to: In Pascal, you declare them globally within your unit — in C, you declare them outside your
functions or, if you declare them inside a function, you declare thetatas

If you are programming for a 68k Macintosh, there is no easy , compiler-independent way for declaring
static data. Some compilers (such as Think C) provide support for using global data in code resource
Some others don't.

The recorcExtModulesParamBlock provides a method for storing global, static data that works on
all compilers:

Each external module has its own record (struct) of Bx4tlodulesParamBlock . A pointer to this
record is passed to your procedures and functions in the parghet€here are some fields in this
record that you can use for your own purposes. Data stored there is preserved between individual ca
to your functions:

* One of these fields is the arrayeftended valuespb”.v[1..30] (under C, this is an array of
double valuespb->v[0..29]). You can use this array for your own purposes — it is not used
by proFit.

» The second such field is the poinpdr.globals (under Cpb->globals). If your procedure
SetUp returns a non-zero value in the paramegguiredGlobals , proFit will initialize
pb”.globals to point to a memory block of corresponding block size (for more information, see
the description of the procedusetUp given above). You need to setjuiredGlobals if you
want to use thpb->globals pointer.

For examples on how to use global or static data, please refer to the sample code provided on yo
distribution disks.

Procedures provided by proFit

proFit offers a list of functions and procedures that can be called by your external modules. If you are
programming in Pascal, they are defined in the interface of the file proFit_interface.p. If you are
programming in C, they are defined in the header file pro Fit_interface.h. Their implementation can be
found in the files pro Fit_interface.p or proFit_interface.c, respectively.

Most of the functions and procedures provided byAdrfor external modules are the 1:1 equivalents of
the ones that can be used when defining a function or program wHit'gprdefinition language. Refer

to Appendix A, “Predefined Functions, Procedures and Arrays” for more information on the individual
routines.

Working with external modules 10-13

11 Apple Script

Introduction

Apple Script is a language for scripting applications on the Macintosh. It provides a common technique
for automating tasks, exchanging data, and process remote control.

You can use Apple Script with pro Fit. Note, however, that pro Fit caneate(i.e. compile) an Apple
Script. To use Apple Script with pro Fit, you need an Apple Script compiler, such as Apple’s Script
Editor (installed together with your system software). You enter the script in the script editor and
compile it there.

can save it in its compiled form. (When using Apple’s Script Editor, choose *

As...” from the “File” menu, choose the type “Compiled script” and save cornpiled soript
script.) Such a compiled script can be loaded into pro Fit: Choose “Load
Module...” from the Customize menu and select the compiled script. It is added to

the Prog menu.

Once the script is compiled, you can either run it from your script editor, or @

In the following, we give some examples for scripting pro Fit through Apple Script. Then we discuss
the differences between programs and scripts. Finally we give a list of the Apple Script commands ani
objects that you can use with pro Fit.

Apple Script is a very powerful programming language. However, it may be confusing
for the beginner. The easiest way to get started is using Apple Script's “recording”
capabilities. Just open the Script Editor and click the Record button. Now go into pro Fit
and do (by hand) what your script is supposed to do. Script Editor records all your

o actions as Apple Script commands. Once you are through, go back to Script Editor and
click the Stop button. Your script is now complete.

Note that this chapter is not intended to give a beginner’s introduction to the Apple Script language. W
will, however, explain some its aspects as we use them. To learn more about Apple Script, consult th
dedicated literature, such as the “Apple Script Language Guide” distributed by Apple.

Examples

Opening and closing a single file

The following is a very simple Apple Script for opening and closing a single file:

tell application "pro Fit"
open file "measured data" -- open a file
run program “"Analyze" -- analyze it
close window "measured data" -- close it
end tell

The script starts with the statemeall application "pro Fit" which indicates that all subsequent
statements (unténd tell) are to be sent to pro Fit. The following lines tell pro Fit to open a file called
“measured data”, run the program “Analyze” from the Prog menu, and then close the file again.

Apple Script 11-1

To use this script, you must enter it in a script editor, such as Apple’s Script Editor:

STI=——— untitled =——"V1|
[} Description...

..............

R

T i

Record Stop Fun Check Syntax

tell application "pro Fit”

aopen file "measured data”™ - - ooen 3 file

run program "Analyze” - - snaleze it

close window "measured data” - - close #he File
end tell

AppleScript |{:Z| I:l

When you click Run, the script is compiled and then executed. When compiling the script, the
statements are converted into Apple Events, data packets that can be exchanged between applicatic
When running the script, they are sent to pro Fit.

=

[[<]

As mentioned above, you can save the script as a “Compiled Script” and then load the compiled scrif
from pro Fit by choosing “Load Module...” from the “Customize” menu. The script is added to the Prog
menu from where it can be run.

Batch processing

Imagine you have a large number of data files in a folder. You want to open each of these files from prt
Fit and analyze its data. Without scripting, you would have to open each file by hand, run your analysis
then close it again — boring work if you have to do it often. The following script does it all for you:

-- bring up a dialog for selecting the folder of the files to analyze
set myFolder to choose folder with prompt "Choose a folder with data files:"

-- create a list with all files in the folder
set myFiles to list folder myFolder -- a list of files in myFolder
set myFileCount to count myFiles -- the number of files in myFolder

-- now start working with pro Fit

tell application "pro Fit"
set oldErrorAlerts to error alerts -- save error alert status
set error alerts to false -- pro Fit should not show alerts
activate -- bring pro Fit to front

repeat with ifrom 1to myFileCount -- go through all files
set theFile to item i of myFiles -- get the i-th file
try

-- open the file for processing as data file:
open file ((myFolder as string) & theFile) as table
write line "found: " & theFile -- write comment to Results window
close window theFile saving no -- close without saving
on error errText
write line "cannot open: " & theFile & " (" & errText & ")"
end try
end repeat
set error alerts to oldErrorAlerts -- restore
end tell

11-2 Apple Script

This script first brings up a dialog box for selecting a folder by using the Apple Script extemgiss
folder with prompt. Then it goes through all the files in this folder and uses the comapandile
name as table for opening the file as a data window. It also uses the commatedine text for
writing a text into the results window. Then it closes the file.

The open file andclose window commands are enclosed by the statemeyntndon error. If any of
these commands fails and returns an errorwitie line statement betweesn error andend try is
executed.

Note that we are setting a property cakedr alert to false before opening the files. This tells pro Fit
that it should not show any error alerts of its own when it cannot open a file.

The above example simply opens each file in the folder and closes it again. In practice, you may e.c
want to run a program on each opened file. For this purpose, simply insert

run program "MyProg" -- analyze it
after the commandpen file, where “MyProg” is the name of the program you want to run.

The following is a more complete version of the above script. It not only runs a program on each opene
file, it also defines the program, adds it to pro Fit's Prog menu, and then exchanges data with it:

-- the following defines the pro Fit program run for each data file:
set scriptProgram to -

program ScriptProgram;

var sum, i;
begin
sum = 0;

for i := 1 to nrRows do

if DataOK(i,1) then sum := sum+data]i,1];
globalData[1] := sum; { store result }
end;

-- bring up a dialog for selecting the folder of the files to analyze
set myFolder to choose folder with prompt "Choose a folder with data files:"

-- create a list with all files in the folder
set myFiles to list folder myFolder -- a list of files in myFolder
set myFileCount to count myFiles -- the number of files in myFolder

-- now start working with pro Fit
tell application "pro Fit (ppc)"
set oldErrorAlerts to error alerts -- save error alert status
set error alerts to false -- pro Fit should not show alerts
activate -- bring pro Fit to front
compile scriptProgram -- add the above program to Prog menu
set myTable to make new table -- open new data window
set kto 1 -- a counter for opened files
repeat with ifrom 1to myFileCount
set theFile to item i of myFiles -- get the i-th file
try
open file ((myFolder as string) & theFile) as table -- open the file
write line "processing: " & theFile
run program "ScriptProgram" -- run the program in pro Fit
close window theFile saving no -- close without saving
set sum to globalData 1 -- get result

Apple Script 11-3

set cell k of column 1 of myTable to sum -- store it in the table
set kto k+1
on error errText
write line "cannot process: " & theFile & " (" & errText & ")"
end try
end repeat
delete program "ScriptProgram” -- remove the program from Prog menu
set error alerts to oldErrorAlerts -- restore
end tell

The above script starts with the definition of the program to be run by pro Fit. Then it opens a new dat:
window and stores its reference in “myTable”. Now it opens each data file in the designated folder,
calculates the sum of the values in its column 1 and stores these sums in column 1 of the data windc
myTable.

The script starts with
set scriptProgram to -

This statement sets the symBotiptProgram to the text following it. The symbot at the end of the
line tells the script editor that more lines follow (to generate this symbol, type the return key while
holding the shift key down).

The statement
compile scriptProgram -- add the above program to Prog menu

sends this text to pro Fit and tells pro Fit to compile it, i.e. to add it to the Prog menu.

Then, the script creates a new data window using the command
set myTable to make new table -- open new data window

The symbolmyTable becomes a reference to the new data window.

Now, the files of the designated folder are opened one by one. After a file is opened, the
ScriptProgram is run and the file is closed again. Then the script retrieves the result of the program
from globalData[1] . The values in the arrayobalData can be accessed from scripts by using the
objectglobalData and an index, such as

set sum to globalData 1 -- get result

The result retrieved in this way is transferred to the k-th row of column 1 of the data window myTable:

set cell k of column 1 of myTable to sum -- store it in the table

As you can see, scripts can exchange data with pro Fit, either through globalData or by accessing valu
in a data window.

There are other ways of interaction between scripts and pro Fit. They are explained in the last section
this chapter, which lists all Apple Script commands and objects supported by pro Fit.

When to program, when to script

As you may have realized, there are various things you can do through Apple Scripts as well as from
program defined within pro Fit. For example, you could define the following program for writing the
sum of the two first cells of a data window into the results window:

11-4 Apple Script

program Sum;

begin
Writeln(data[1,1]+data[1,2]);

end;

Alternatively, you could do the same from an Apple Script:
tell application "pro Fit"
set sum to value of cell 1 of column 1 + value of cell 1 of column 2
write line sum
end tell

Even though the above examples do the same, you will prefer the program, because defining progran
is usually more convenient and faster.

In practice, you probably use programs more often than Apple Scripts. Programs can be defined withi
pro Fit, they are much faster, and they are better suited for numerical applications. However, there at
some things that you simply cannot do from a program, such as exchanging data with other application
communicating with the Finder, batch processing a large number of files, etc. For these tasks, you ca
use Apple Scripts.

You can combine the advantages of Apple Scripts and programs: To call an Apple Script from &
program, first add it to the Prog menu (choose Load Module... from the Customize menu), then call i
with CallProgram..). To call a program from an Apple Script, compile it and use the command
program.

Apple Script commands and classes

The following is a list of the Apple Script commands and classes (objects) supported by pro Fit.
Keywords are shown ibold, arguments are listed italics, optional arguments and keywords are
enclosed in square brackets, alternatives are separated by /

Required Suite: Events that every application should support.

open Open the specified object(s)
open file -- list of objects to open
[as data window/drawing window/funcProg window/text window]

If the file is a file of type text, you can indicate if it is to be opesetext (i. €. in a new function
window) oras table (i. e. in a new data window).

Examples:

open file "HD:myData" -- opens the file "myData” on the disk HD

open file "data" as table -- opens the (text) file “data” as data file

open file "Drawingl" -- opens the file called “Drawing” in pro Fit folder

print : Print the specified object(s)
print reference -- object(s) to print
[dialog boolean] -- indicates if we should show print dialog (default is true)

quit: Quit an application program
quit

Apple Script 11-5

run: Sent to an application when it is double-clicked
run

pro Fit suite: Special commands for pro Fit

add parameter set Adds the current parameters to the parameter set menu
add parameter set
as string -- the name for the set
[option for all boolean] -- true if added set should be available for all functions

calculate statistics performs statistical calculations on the given window

calculate statistics reference -- the data window for the statistical analysis
[column integer] -- the column for the statistical analysis. O to use all columns.
median boolean -- set to true to calculate median, minimum, maximum.
basic boolean -- set to true to calculate basic statistical information.
skewness boolean -- set to true to calculate Skewness and Kurtosis.
[selected cells boolean] -- true if statistical analysis of the current selection
[selected rows boolean] -- true if statistical analysis must be applied

-- only to the data contained in the selected rows.

To retrieve the results, use e.g.
get statMean of results -- returns the mean value
(Available selectors of results are listed for class "calculation results" below)

capture: Switches capturing on and off
capture constant -- to file | enabled | disabled | done
[to alias] -- the file to capture into (not used for options on | off | done)
Example:
tell application "pro Fit PPC"
capture to file "HD:logFile" -- start capturing to logFile
write line "hi there" -- will be captured
capture disabled -- disable capturing temporarily
write line "some text" -- will not be captured
capture enabled -- enable capturing
write line "add this to log file" -- will be captured
capture done -- close the capture file
end tell

clear: Clears the current selection
clear

close Close a window
close reference -- the window to close
[saving yes/no/ask] -- Specifies whether or not changes should be saved

Windows can be specified by name or index (1 is the frontmost window, 2 is the window behind
the frontmost window).

11-6 Apple Script

If you append the specificatiaaving yes then all changes are saved — if the window has not yet
been saved to a file, you are asked to specify where you want to save the changes. If you appel
saving no, changes are not saved. If you appsadng ask or if you do not append a saving

specification and the window contains unsaved changes, pro Fit will ask if you want to save the
changes.

Examples:
close front window -- prompts for saving unsaved changes
close window "Tablel" saving no -- closes the window without saving

compile: Compile a function or program written in pro Fit's definition language.
compile reference -- text or file to compile

Examples:
compile file "HD:myProg" -- compiles the given file
compile "function lin; begin y:=a[1]*x; end;" -- compiles a text

the following is a more realistic way to define and compile a larger program from a script: (note that

you can create the character "-" by hitting option-return — this character specifies that the line is
continued on the next one):
set myProg to -

program test;

var i, sum;
begin
sum := 0;

for i := 1 to nrRows do
if dataOK(i, 1) then sum := sum + data]i,1];
writeln(‘'sum of col 1: ', sum);
end; "

tell application "pro Fit"

compile myProg -- compiles the above definition
run program "test" -- and runs it
end tell

copy. Copies the current selection to the clipboard.
copy

cut: Cuts the current selection to the clipboard.
cut

Note: To get the clipboard of pro Fit, use "get clipboard"

data export options Sets the options for exporting data as text files
data export options
mode withtitles/withouttitles/custom -- Base format
[titles boolean] -- Write column titles
[copyInfo boolean] -- Write info as header lines
[optimize boolean] -- Optimize text length
[delimiter string] -- Column delimiter
[terminator string] -- Line terminator
[firstLine string] -- First header line

Apple Script 11-7

data import options: Sets the options for importing data from text files
data import options

mode withtitles/withouttitles/custom -- Base format
[headerLines integer] -- Number of header lines

[tittes boolean] -- Read column titles

[copyInfo boolean] -- Read header lines as info

[delimiter string] -- Column delimiter

[terminator string] -- Line terminator

delete Removes a function or program from pro Fit's menus

delete reference -- The function or program to delete
delete program "FitFrontWindow" -- deletes the specified program
delete function "linear" -- deletes the specified function

delete parameter setDeletes a saved parameter set

delete parameter set string -- the name of the parameter set.
-- Omit to delete all parameter sets of the given function
[for string] -- the name of the function the parameter set belongs to

-- (omit for global sets)
[in alias] -- the file in which to save the object
[fromMenu boolean] -- setto true to delete the parameter set
-- from the alternate parameter sets menu (default = true)
[fromFile boolean] -- set to true to delete the parameter set from
-- the file specified in the "file" parameter (default = true).

do script: Compile and execute one or more Pascal statements
do script reference -- the window or the statements to execute

Examples:
do script "Writeln('"Hello world");" -- executes the pascal statement

FFT: Fourier transform from real to complex numbers (see also "inverse FFT")
FFT window -- the data window
inputCol integer -- input column (data in time domain)
outputColl integer -- output column 1 (real part or amplitude in frequeny domain)
outputCol2 integer -- output column 2 (imaginary part or phase in frequeny domain)
reallmaginary boolean -- true if output columns contain real and imaginary parts,
-- false if amplitude and phase
[outFregencyCol integer] -- frequency output column (calculated from timelnterval)
timelnterval real -- time interval between input data points
[print results boolean] -- true if comments are to be printed in Results window

find extrema of: finds maxima and minima of the given function
find extrema of reference -- the function to be used
xMin real -- lower bound of the interfal where extrema must be found
xMax real -- upper bound of the interval where extrema must be found
subintervals integer -- number of subdivisions where to look for a result
[print results boolean] -- true if comments are to be printed in Results window

11-8 Apple Script

find roots of: finds the solutions of the equation "f(x) = yVal"
find roots of reference -- the function to be used
xMin real -- lower bound of the interval where roots must be found
xMax real -- upper bound of the interval where roots must be found
subintervals integer -- number of subdivisions where to look for a result
[value real] -- the function value yVal in the equation "f(x)=yVal", default is zero
[print results boolean] -- true if comments are to be printed in Results window

fit: fits the given function to the given data
fit reference -- the function to use for fitting
algorithm levenberg/monte carlo/robust/linear/polynomial -- fit algorithm to be used
using reference -- the data window with the data to be used for the fit
xColumn integer -- the x-coordinates of the data to be used for the fit
yColumn integer -- the y-coordinates of the data to be used for the fit
[XErrorKind individualErr/constantErr/percentErr/lunknownErr/zeroErt]
-- how the x-errors are specified
[yErrorKind individualErr/constantErr/percentErr/unknownErr/zeroErr]
-- how the y-errors are specified

[XErrorColumn integer] -- the column with the x-errors, if xErrorKind is individual
[yErrorColumn integer] -- the column with the y-errors, if xErrorKind is individual
[XError real] -- the magnitude of the x-error, interpretation depends on xErrorKind
[yError real] -- the magnitude of the y-error, interpretation depends on yErrorKind
[xDistribution gaussianDistribution/lorentzianDistribution/exponentialDistribution/

tukeyDistribution/andrewDistribution] -- the error distribution for the x-errors
[yDistribution gaussianDistribution/lorentzianDistribution/exponentialDistribution/

tukeyDistribution/andrewDistribution] -- the error distribution for the y-errors
[auto search boolean] -- used when algorithm is montecarlo.
[selected only boolean] -- true if fitting using selected rows only
[full description boolean] -- true to print a full description of the fit parameters
[active parameters boolean] -- true to print only the active parameters
[error analysis boolean] -- true to perform an error analysis after the fit
[stopCounter integer] -- tells Monte Carlo fitting when it must stop
[iterations integer] -- the number of iterations to be used for error analysis
[confidence interval real] -- confidence interval (in %) to be used for error analysis
[print results boolean] -- true if comments are to be printed in Results window

get data Gets the data of an object
get data reference -- the object
Result: anything -- the data of the object

evaluate Return the value of a regular Pascal expression
evaluate string -- the expression
Result: real --the result of the expression

integrate: finds the integral of the given function
integrate reference -- the function to be used
xMin real -- lower bound of the integration interval

Apple Script 11-9

xMax real -- upper bound of the integration interval
iterations integer -- number of iterations used
[print results boolean] -- true if comments are to be printed in Results window

inverse FFT: inverse Fourier transform from complex to real numbers (see also "FFT")
inverse FFT window -- the data window
inputColl integer -- input column 1 (real part or amplitude in frequeny domain)
inputCol2 integer -- input column 2 (imaginary part or phase in frequeny domain)
outputCol integer -- output column (data in time domain)
reallmaginary boolean -- true if input columns contain real and imaginary parts,
-- false if amplitude and phase

[outTimeCol integer] -- time output column (calculated from frequenyinterval)
frequencylinterval real -- frequency interval between input data points
[print results boolean] -- true if comments are to be printed in Results window

load parameter set Loads a saved parameter set
load parameter set string -- the name of the parameter set. Omit to load all parameter
-- sets of the given function.
[for string] -- name of the function the parameter set belongs to (omit for global sets)
[from alias] -- the file from which to load the parameter set

make: Make a new window.
make
new: type class -- the class of the new element: 'table’, ‘drawingWindow',
-- 'textWindow'
[with properties: record] -- the initial values for the properties of the element
Result: reference --to the new object(s)

The keyword “new” is optional in Apple Script.

what specifies the type of window to be opened. Spetdple for a data window,
drawingWindow for a drawing windowtextWindow for a function window.

Thewith properties parameter specifies the properties of the window in an Apple Script record.
All types of pro Fit windows have the properigme holding the name of the window as a
string. In addition to this, data windows have the properiows andnrCols with the
numbers of rows and columns.

Examples:
make table with properties {name:"myTable"}
-- creates a new data window having the name "myTable"
make drawingWindow with properties {name: "lookatthis"}
-- creates a new drawing window having the name lookatthis
make textWindow -- creates a new function window
make table with properties {name:"small", nrCols:10, nrRows:20}
-- creates a data window with name "small", 10 columns and
-- 20 rows

-- the following creates a new data window and then closes it using a
-- temporary reference to the window

set myRef to make new table

close myRef

11-10 Apple Script

page setup Brings up the page setup dialog box.
page setup reference -- window

optimize: Find the parameters and x value that maximize or minimize a function
optimize reference -- the function to maximize or minimize
xValue: real --the x-value passed to the function (the starting value if "vary x" is true)
[precision: real] -- precision, use 0 for maximal precision
[minimum: boolean] -- must be set to true to look for a mimium instead of a maximum
[vary parameters: boolean] -- set to true to find the values of the active
-- parameters which optimize the function
[vary x: boolean] -- set to true to find the x-value which optimizes the function
[full description: boolean] -- true to print a full description of the optimized
-- parameters and results in the results window

[print results: boolean] -- true if comments are to be printed in Results window

paste Pastes the clipboard into the front window.
paste

plot data: Plot one or more data columns.
plot data

[xColumn integer] -- the x column
[yColumn integer] -- a list of y columns
[of window] -- the window to take our data from
[new window boolean] -- true if plotting into new window
[new graph boolean] -- true if creating new graph
[xFrom real] -- x range: beginning
[XTo real] -- x range: end
[yFrom real] --y range: beginning
[yTo real] --yrange: end
[autoX boolean] -- true if automatic x-range
[autoY boolean] -- true if automatic y range
[xScaling lin/log/reciprocal/probability] -- x scaling
[yScaling lin/log/reciprocal/probability] -- y scaling
[xAxis small integer] -- x axisto be used (1 ...)
[yAxis small integer] --y axisto be used (1 ...)
[selected only boolean] -- true if plotting selected rows only
[error bars boolean] -- true if drawing error bars
[connected boolean] -- data points connected with lines
[point type small integer] -- index of point style in point menu
[point size real] -- size of point
[background point type small integer] -- index of background point type
[background point size real] -- size of background point
[point thickness real] -- line thickness for drawing points
[curve thickness real] -- if connected, thickness of line
[curve dash small integer] -- if connected, line dash id
[curve red integer] -- color: red component
[curve green integer] -- color: green component

Apple Script 11-11

[curve blue integer] -- color: blue component

plot: Plots a function.
plot reference -- the function to plot - omit for current function

[xFrom real] -- x range: beginning
[XTo real] -- x range: end
[new window boolean] -- true if plotting into new window
[new graph boolean] -- true if creating new graph
[yFrom real] --yrange: beginning
[yTo real] --yrange: end
[autoY boolean] -- true if automatic y-range
[xScaling lin/log/reciprocal/probability] -- x scaling
[yScaling lin/log/reciprocal/probability] -- y scaling
[xAxis small integer] -- x axis to be used (1 ...)
[yAxis small integer] --y axisto be used (1 ...)
[step real] -- step width or number of steps (0 for automatic)
[subrange start real] -- start of subrange to plot
[subrange end real] -- end of subrange to plot
[fitted parameters boolean] -- true if using fitted parameters
[curve thickness real] -- if connected, thickness of line
[curve dash small integer] -- if connected, line dash id
[curve red integer] -- color: red component
[curve green integer] -- color: green component
[curve blue integer] -- color: blue component

reduce data applies various data reduction algorithm do the data
reduce data reference -- the window containing the data to be reduced
using keep/remove/average/smooth/keepSelected/removeSelected -- algorithm
[points integer] -- number of points over which to average, etc.
[selection only boolean] -- true if reduction is applied only to the current selection

run program: Run a program from the User submenu.
run program string -- The name of the program

Example:
run program "FitFrontWindow" -- run the specified program

For a more elaborate example, see the command “compile”, above.

save Save a window

save reference -- the window to save

[in alias] -- the file in which to save the object

[as data file/drawing file/EPS file/function file/PICT file/text file]

-- file type for data export

Windows can be specified by name or index (1 is the frontmost window, 2 is the window behind
it, etc). Note that Apple Script allows you to specify indexed objects in various ways (such as
window 1, front window, 3rd window, last window)

Optionally, you can specify the file where the window is to by savediafi€éryou do not specify
the file where to save the window and the window has never been saved before, you are prompte

11-12 Apple Script

to enter a file name. If you don’t specify the file where to save the window and the window has
been saved before, the window is saved to the same file as before.

If the specified window is a data window, it is saved as a regular pro Fit file by default (this is
equivalent to specifying “as table”). If you want the data window to be saved as text file for
exporting it, specify “as text”.

Examples:
save window 1 to file "HD:data" -- saves front window to file
save window "data" to file "data.txt" as text -- saves as a text file

save parameter setSaves a parameter set
save parameter set string -- the name of the parameter set.
-- Omit to save all parameter sets of the given function
[for string] -- the name of the function the parameter set belongs to
-- (omit for global sets)
[in alias] -- the file in which to save the parameter set. Omit to save as permanent set

select Select the specified object
select reference -- the object to select (window, function, row, column, cell)
options add discontinuously/add continuously/deselect/forget old
-- omit for deleting the old selection

select all Selects everything within the front window
select all

set data Set the data of an object
set data reference -- the object to set
to anything -- the new value

set fit range of parameter sets the fitting range of a parameter for Monte Carlo fits
set fit range of parameter integer -- the parameter number
minimum real -- lower range limit
maximum real -- upper range limit
percent boolean --true if the range is defined as percentage deviation
-- from the parameters value

set legend propertiessets the visibility, position and size of the legend of the current graph
set legend properties
[visible boolean] -- show or hide the legend
[offsetx real] -- offset between left of legend and right of graph
[offsety real] -- offset between top of legend and top of graph
[width real] -- width of legend item (left part)
[height real] -- height of a legend item

sort: Sort the numbers in a data window
sort reference -- the data window to be sorted
using column integer -- the data is sorted with respect to this column
[order sortAscending/sortDescending] -- the sorting order (ascending | descending)
[selection only boolean] -- true if only the current selection must be sorted

Apple Script 11-13

undo: Undoes the last action.
undo

tabulate: tabulate a functon
tabulate reference -- the function to tabulate
[parameter integer] -- the parameter to be varied (O for x)
from real -- the starting x-value
to real --the maximum x-value
step value real --the step between successive calculations
[step numeric/auto/points] -- stepping option (auto | points)
[x value real] -- the x-value used when tabulating by changing a parameter
[fittedParams boolean] -- true to use fitted parameters instead
-- of the current function parameters

tabulate roots of tabulates the roots of a given functon
tabulate roots of reference -- the function to tabulate

[parameter integer] -- the parameter to be varied (-2 for xMin, -1 for xMax)
from real -- the starting parameter value
to real -- the maximum parameter value
step value real --the step between successive calculations
xMin real -- lower bound of the interval where roots must be found
XxMax real -- upper bound of the interval where roots must be found
subintervals integer -- number of subdivisions where to look for a result
[value real] -- the function value yVal in the equation "f(x)=yVal", default is zero

tabulate extrema of tabulates the extrema of a given function
tabulate extrema of reference -- the function to tabulate

[parameter integer] -- the parameter to be varied (-2 for xMin, -1 for xMax)
from real -- the starting parameter value
to real -- the maximum parameter value
step value real -- the step between successive calculations
xMin real -- lower bound of the interval where extrema must be found
xMax real -- upper bound of the interval where extrema must be found
subintervals integer -- number of subdivisions where to look for a result

tabulate integral of: tabulates the integral of a given function
tabulate integral of reference -- the function to tabulate
[parameter integer] -- the parameter to be varied (-2 for xMin, -1 for xMax)
from real -- the starting parameter value
to real -- the maximum parameter value
step value real --the step between successive calculations
xMin real -- lower bound of the interval where extrema must be found
xMax real -- upper bound of the interval where extrema must be found
iterations integer -- number of iterations used for the numerical computation of
-- the integral

transform: performs data transformations in a data window

11-14 Apple Script

transform reference -- the window containing the data to transform
operation sumOp/subOp/multOp/divisionOp/powerOp/DIVOp/MODOp/integralOp/
derivativeOp/formulaOp/functionOp/sqrOp/sqrtOp/invertOp/
absOp/expOp/InOp/tentoOp/log LOOP/fillO/AillL/illN/sinOp/arcsinOp/
cosOp/arccosOp/tanOp/arctanOp/sinhOp/arsinhOp/coshOp/
arcoshOp/tanhOp/... -- the operation used for the transformation calculations
[using reference] -- the function (from the Func Menu) to be used
[xColumn integer] -- the x-column to be used in column transformations
[yColumn integer] -- the y-column to be used in column transformations
[argumentColumn integer] -- the argument-column to be used with
-- transformation functions that need another argument
-- besides x. Set this parameter to zero to use a constant
-- numeric value.
[argumentValue real] -- the argument-value to be used with transformation
-- functions that need another argument besides x.
-- Used when the argument column is set to zero.
[expression string] -- the pascal expression to be used as a transformation function
[selected cells boolean] -- true if the transformation must be applied only
-- to the current selection
[selected rows boolean] -- true if fitting using selected rows only

transpose Exchanges columns and rows in a data window
transpose reference -- the data window to transpose

use parameter setMoves a parameter set found in the alternate parameter set menu to the parameter
window
use parameter set string -- the name of the parameter set or "fitted parameters"
[for string] -- name of the function the parameter set belongs to
-- (omit for the current function)
[option for all boolean] -- true to use one of the sets available for all functions

write : Write a text into the results window
write string -- the text to be written

write line: Write a text into the results window and advance to a new line
write line string -- the text to be written

Classes of the pro Fit suite

Many of the classes (windows, columns, etc) that can be accessed within pro Fit have properties ¢
elements. For instance, each window has a property celted, each column has the propertiesne
anddefault type. A data window (table) halumns as elements, each column lcals as elements.

You can access properties and elements by using the following standard Apple Script commands "g
data" or "set data". Abbreviated, they are used as "get", "set" and "copy".

Examples:
get name of front window -- returns the name of the front window
if nrRows of window 2 < 10 then error -- “get” is not necessary

Apple Script 11-15

set myVar to cell 1 of column 2 of window "Table"

set name of front window to "myData" -- sets front window name

set nrRows of window "Table" to 200 -- resize a data window

set default type of column 2 of front window to string -- set col. type

set myvar to value of every cell of column 4 of front window -- myvar becomes an list of
numbers

Note: a list of the properties and elements that can be accessed is given below

The following lists the properties and elements of pro Fit's classes and gives some examples on the
use. If a property or element is marked as [r/0], it is “read-only” and cannot be changed.

Classapplication: The pro Fit application

Properties:
default column type: type class -- real, single
current function: function -- the currently selected function
clipboard: a list of record [r/0] -- contains elements of type PICT and TEXT
decimals: integer -- the number of decimals for numeric output
error alerts: boolean -- true if alert is to be shown when Apple Event failed
results: calculation results [r/o] -- Results of preceding calculations
script debugging: boolean -- true if script debugging enabled, false if disabled
version: version [r/o] -- the version of the application
<Inheritance> base class properties [r/0]

Notes:

error alerts indicates if pro Fit should show alerts when handimpple Events (i.e. when
executing an Apple Script). By default, this property is true. When your script does its own error
handling, you should set it to false. If you do so, reset it at the end of your script — if you don't,
pro Fit will not show any errors when handling Apple Events from the Finder later.

Settingscript debugging to true causes pro Fit to write a list of all Apple Events it receives to the
results window. This feature does not work for scripts started from within pro Fit.

Classcalculation results The result of the last calculations

Properties:
chiSquared: real [r/o] --fitting: chi squared
fittedParameters: a list of real [r/o] -- fitting, optimization: the fitted parameters
nrFittedParameters: integer [r/0] -- fitting: the number of fitted parameters
sumOfDeviations: real [r/o] -- fitting: sum of the error deviations (Robust algorithm)
correlation: real [r/o] -- fitting: linear correlation between x- and y-values (linear regression)
probCorrelation: real [r/o] -- fitting: significance of correlation (linear regression)
covariance: a list of real [r/o] -- fitting: covariance matrix
nriterations: integer [r/o0] --fitting: number of iterations
goodnessOfFit: real [r/o] --fitting: goodness of fit
confidenceMin: a list of real [r/o] -- fitting low boundaries of confidence intervals
confidenceMax: a list of real [r/o] -- fitting: high boundaries of confidence intervals
standardDeviations: a list of real [r/o] -- fitting: standard deviations of the parameters
optimizedX: real [r/o] -- optimization: x value
optimizedY: real [r/o] -- optimization: y value
rootsCount: integer [r/o] -- roots: number of roots
rootsXValues: a list of real [r/o] -- roots: x values

11-16 Apple Script

rootsYValues: a list of real [r/o] -- roots: y values

extremaCount: integer [r/o] -- extrema: number of extrema
extremaXValues: a list of real [r/0] -- extrema: x values
extremaYValues: a list of real [r/0] -- extrema: y values
extremasSigns: a list of real [r/0] -- extrema: signs (1 for maxima, -1 for minima)
integralValue: a list of real [r/0] -- integral: value of the integral
integralAccuracy: a list of real [r/0] -- integral: last correction
statCount: integer [r/o] -- statistics: the number of evaluated values
statSum: integer [r/o] -- statistics: the sum of all values

statMean: real [r/o] -- statistics: mean

statMedian: real [r/o] -- statistics: median

statStdDeviation: real [r/o] -- statistics: standard deviation
statMeanAbsDeviation: real [r/0] -- statistics: mean absolute deviation
statMinimum: real [r/0] -- statistics: minimum

statMaximum: real [r/0] -- statistics: maximum

statVariance: real [r/o] -- statistics: variance

statSkewness: real [r/0] -- statistics: skewness

statKurtosis: real [r/0] -- statistics: kurtosis

Classcell: A cell in a data window (access by index)
Properties:
value: real -- the value of the cell
<Inheritance> base class properties [r/0]

Examples:
get value of cells 1 thru 8 of columns 4 thru 12 of front window
-- returns a list of lists
set value of cell 2 of column 2 to 22
set value of cells 1 thru 5 of column 1 to {2, 4, 6, 8, 10}
set value of cell 5 of column 8 to "there" -- cell in a text column
set value of every cell of column 1 to O -- set all cells of column 1 to 0

Note: You can access cells by giving an index or a range of indices
If you get the value of an empty cell, a so-called “NAN”-value is returned. Note that the
present version of Apple Script will cause an error when being forced to display such a
value.

Classcolumn: A column in a data window (access by index)
Properties:
name: string -- the name of the column
default type: type class -- string, real, single
decimals: integer -- the number of decimals, -1 for automatic
format: scientificForm/floatingForm -- display format for numbers
width: integer -- the width of the column, O for default width
<Inheritance> base class properties [r/0]

Note:
* You can access columns by giving an index or a range of indices.
* You can set the type of a column by settdejault type to string (text column),real
(double precision column with approximate range of 1e30@jirmie (single precision
column with approximate range of 1e30)

Apple Script 11-17

Classfunction: A function (access by name or index)
Elements:
parameter
Properties:
name: string [r/o] -- the name of the column
nrParams: integer [r/o] -- The number of parameters
shown: boolean [r/o] -- True if the function is shown in the preview window
<Inheritance> base class properties [r/0]

ClassglobalData: an array of double values (access by index 0..99)
Elements:
real

Note:
The entries in the ligflobalData can be acessed by index (0 to 99) but not by range.

globalData can also be accessed by functions and programs. It provides a mechanism for

exchanging data between scripts and pro Fit programs. Example:
set myProg to -

program SumOneColumn; { calculates the sum of a column }

var i,j, sum;
begin
sum := 0;

j = globalData[1];
fori:=1 to nrRows do
if dataOK(i, j) then sum := sum + data[i,j];
globalData[2] := sum;
end; "

tell application "pro Fit"
compile myProg -- compiles the above definition
set globalData 1 to 2 -- the column we want to sum
run program "SumOneColumn" -- runs the program
delete program "SumOneColumn" -- clean up pro Fit's menus
get globalData 2 -- get the result
end tell

Classsingle a real value with small accuracy

Classtable: a data window (access by index or name)
Elements:
column
Properties:
name: string -- the title of the window
nrCols: integer -- the number of columns
nrRows: integer -- the number of rows
<Inheritance> base class properties [r/0]

Note:
In most cases, you can use the classes “window” or “table” equivalently, you can write

11-18 Apple Script

set nrRows of window "data" or
set nrRows of table "data"

pro Fit will automatically cast one class type into the other. Note however, that there are some
situations where the words are not equivalent, e.g.

set name of front window to "data"
set name of front table to "data"

The first example sets the name of the front window, the second the name of the front most dat
window.

ClassdrawingWindow: a drawing window (access by index or name)
Properties:

name: string -- the title of the window

<Inheritance> base class properties [r/0]

Classparameter: a parameter of a function

Properties:
name: string -- the name of the parameter
value: real -- the value of the parameter
min: real -- the minimum value of the parameter (or none)
max: real --the maximum value of the parameter (or none)
mode: inactive/active/constant -- the mode of the parameter
<Inheritance> base class properties [r/0]

Classprogram: A program or apple script (access by name or index)
Properties:

name: string [r/o] -- the name of the column

<Inheritance> base class properties [r/0]

Classrow: A row in a data window (access by index)
Plural form:
rows

ClasstextWindow: a function or program window (access by index or name)
Properties:

name string -- the title of the window

<Inheritance> base class properties [r/0]

Classwindow: a window (access by index or name)
Plural form:
windows
Properties:
name: string -- the title of the window
bounds: bounding rectangle -- the boundary rectangle for the window
floating: boolean [r/o] -- Does the window float?
info: string -- the info text
font: string -- the name of the default font for text
size: fixed -- the default size for text
style: 'tsty’ -- the default text style for text
<Inheritance> base class properties [r/0]

Apple Script 11-19

Note:
You cannot access floating windows. You cannot change the name of the parameter window o
the results windows. To specify a window, you can either use its name or its index. The index
ranges from 1 to the number of windows, where 1 designates the front window.

Classbase class propertiesProperties inherited by all objects.
Properties:
properties: record -- a record containing all properties of the element

11-20 Apple Script

12 Printing

There is a wide range of different printers that can be connected to a Mac OS machine, and each of the
printers have different capabilities, resolutions and command languag€g. gdlows you to get the
best out of most of the commonly used printers if you follow the guidelines described in this chapter.

Basically, there are two possibilities for printing pibdrawings. You can print from pFat directly

(using thePrint command from the File menu) or you can export a drawing to another application, such
as a word processor (using t8epy or theCreate Publisher commands or by dragging it to the
other application), and print it from there. The next two sections discuss these two possibilities
separately.

Printing from pro Fit

Before printing, you should chooBage Setupgrom the File menu.
You can print the active window by selecting Bxext command from the File menu.

proFit offers three different modes of printingrinting through QuickDraw GXprinting with
PostScriptandprinting at the printer’s resolutionYou can select the desired method by choosing
Preferences... from the File menu. In the dialog box that comes up, click the icon “Printing” in the list at
the left. The dialog box now looks as follows:

Preferences

awr
[T L
LI" 9]

M

[Use Quickdraw GX

General

Printing
- m [+ Print drawings using PostScript

FICT Options [Use Quickdraw for text

Preview

® (oK)

o 21 (caner)
Interface |™ /

If you checkUse QuickDraw GX, proFit uses the features of Apple’s graphics environment
QuickDraw GX. This option is disabled if you don’t have QuickDraw GX installed on your computer,
and it only works on Operating Systems prior to Mac OS 8. Once you have checked ‘Use QuickDraw

Printing 12-1

GX’, printing with PostScript is disabled. Note that you must restarfeipghen you have changed
this option.

For best results on any printer, you should check ‘Use QuickDraw GX’ if you have QuickDraw GX
installed on your computer and you are using an older system software.

If you checkPrint drawings using PostScript proFit sends PostScript commands to the printer
together with a simple picture describing your drawing. You should check this option if you are printing
to a PostScript printer. When you check “Print drawings using PostScript”, you should also check
“Use QuickDraw for text’. More information on this option is given below.

If neither ‘Use QuickDraw GX’ nor ‘Print drawings using PostScript’ are checkedripgrints the
drawing “at the printer’s resolution”. No PostScript commands are sent in this case. You should use thi
setting if you are printing to a non-PostScript printer.

The default setting on a “fresh” installation of pro Fit is the last one. l.e. no PostScript is
sent to the printer. The reason for this is that this default setting gives good results on
most printers, PostScript or not PostScript.

[If you have a PostScript printer, you will get better results if you check the “Print
Drawings using PostScript” option.|

Printing with QuickDraw GX

QuickDraw GX is Apple’s improved printing and graphics environment shipping with System version
7.5. Note, however, that Quickdraw GX printing is not supported anymore under MacOS 8.

You must check the Use QuickDraw GX option in the “Printing” preference panel if you
want to export QuickDraw GX shapes through the clipboard or by drag and drop (see
next chapter, “Printing a drawing from another application”).

When printing with QuickDraw GX, texts will be kerned and ligatures will be used. For more
information on kerning and ligatures see Chapter 7 “Drawing”, section “Text objects”.

Printing with PostScript

PostScrig® is a language for defining graphical objects. It is used by many high quality printers. When
an application prints to such a printer, it can use the built-in graphics language of the Macintosr
(QuickDraw), which is automatically translated to PostScript by the printer driver before it is sent to the
printer. However, some information may be lost during this translation. To get better results, an
application can generate the PostScript directly and send it to the printer, obviating the need for an
translation.

Check ‘Print drawings using PostScript’ after choosing the “Printing” panel of the preferences dialog
box, to let prd=it generate PostScript during printing. To print drawings with PostScript, you must
disable QuickDraw GX by unchecking the option ‘Use QuickDraw GX'.

When printing with PostScript, you should usually check the option “Use QuickDraw for text” for best
compatibility with most printer drivers and printers. If “Use QuickDraw for text” is checkeéjtdrst
creates PostScript code for all items of the drawing window except text items and sends this code to tt

12-2 Printing

printer. Then it draws the texts — without using PostScript. This ensures the correct setting of the for
and supports all text styles. If you uncheck ‘Use QuickDraw for text’, text will be sent as PostScript
code — this option is not recommended as it can lead to compatibility problems with some printer drivers

Not all printers support PostScript. Don’'t use the ‘Print drawings using PostScript’
option on non-PostScript printers. A non-PostScript printer will ignore the PostScript
commands and will print a non-optimized picture (with the resolution of the screen).

Switch off the option ‘Print drawings using PostScript’ to get optimal results on a non-PostScript printer
(see the next section, below).

Drawings will generally look better when printed with PostScript than when they are printed at the
printer’'s resolution. However, there are some minor problems when using special patterns or character
* When using patterns, only the gray patterns will print. All other patterns will be replaced by a 50%
gray pattern.
» If “Use QuickDraw for text” is not checked, outlined, shadowed and underlined fonts are not
supported.
« If “Use QuickDraw for text” is checked, text is printadoveall other items in a drawing.

Printing at full printer resolution

If your printer does not support PostScript, do not check ‘Print drawings using PostScript’. In this case
proFit determines the resolution (the number of distinguishable dots per inch that can be printed) of youl
printer when it is printing a drawing window. Using this information,Fppt@an optimize the picture it
sends to the printer in order to take full advantage of the resolution available on your printer.

Printing a pro Fit drawing from another application

When you copy or drag a drawing into another application (or when you create a Publisher that yol
subscribe to from another application), procreates a picture (often called PICT) that contains all the
information required for drawing the copied objects on the screen. However, when it comes to printing
on a high quality printer (with better resolution than the screen), more information is needed. This
additional information must be packed into the picture. Since there is no standard method of doing this i
a way that works for all printers, you should give fpitcsome information about your printer before
creating a picture.

You can give this information by choosing Preferences from the File menu and selecting “PICT
Options” from the list of icons to the left. This brings up the following dialog box:

Printing 12-3

Preferences

M

3 Normal PICT 3 Enlarged PICT

General @ Embedded PostScript (O Bitmap

Q i3 High resolution PICT O Quickdraw GX shape
Printing

* [] Add Quickdraw GX [for printer only =

PICT Dpt;-:uns [+ Use Quickdraw for Text

x

L™ | standards... |
Crawing
F'r:elv.iew

You can choose between six picture formats:

« Normal PICT: Use this option when you don’t plan to print your pictures at a high quality.
Pictures generated with this option look fine on the screen and use a minimum amount of memory.

» Embedded PostScript Use this option when you are planning to print your pictures on a printer
that understands PostScript, such as a printer of the Lase@\mmily. The pictures generated
with this option still look nice on screen, but they also have PostScript information included.

When you select “Embedded PostScript”, you can specify if you want to “Use QuickDraw for
Text”. For best compatibility with the widest range of printers and printer drivers, “Use QuickDraw
for Text” should be checked.

For more information on printing with PostScript, see the section ‘Printing with PostScript’ earlier
in this chapter.

» High resolution PICT: This option generates pictures that print well on most printers if the
printing application supports “printing at the printer’s resolution” and does not change any in-
formation in the pictures it imports. However, few applications presently support these features.
When generating a high resolution picture, you must enter the desired resolution in a text field
appearing at the bottom of the dialog box.

High resolution pictures may not look perfect on screen but they use a minimum amount of memory.

» Enlarged PICT: Pictures generated under this option are enlarged by a zoomzfgiten by the
specified resolution. You can enter the resolutiomn an edit field appearing at the bottom of the
dialog box. The zoom factor is given by the formuitar / 72 dots per inch.

You can obtain high quality prints of an enlarged picture on many printers by choosing a reduction
factor 1z in the Page Setup dialog box before printing.

» Bitmap: This is presently the recommended picture format for printing on any high resolution
printer that does not support PostScript if you don’t have QuickDraw GX installed. In a bitmap
every pixel of the picture is stored at the printer’s resolution. You can enter the desired resolution in
a text field appearing at the bottom of the dialog box.

12-4 Printing

Bitmaps print well on most high resolution printers. However, a bitmap uses a large amount of
memory and often looks unsatisfactory on screen. Also, printing a bitmap can be very slow,
especially when printing to a PostScript device.
When you select ‘Bitmap’, you can specify if your bitmap should be black and white or if it should
contain color information. Don’t check ‘with Color’ unless you really need a color bitmap — black
and white bitmaps use considerably less memory.

* QuickDraw GX shape This option is only available if you have QuickDraw GX installed and if
you have checked ‘Use QuickDraw GX’ in the “Printing” panel of the Preferences dialog box.
If ‘QuickDraw GX shape’ is checked, pictures are exported as “shapes” (the data exchange format o
QuickDraw GX). Shapes print fine from all applications that allow importing them. If you are unable
to paste a shape into an application, then this application does not yet fully support QuickDraw GX.
Note: You can also append a QuickDraw GX shape to normal pictures using the “Add QuickDraw
GX” option, described below.

The options “Normal PICT”, “Embedded PostScript”, “Enlarged PICT” and “Bitmap” all generate a
classic QuickDraw picture. It can be pasted into nearly all applications that support graphics. The optiol
“QuickDraw GX shape” generates a QuickDraw GX shape, which can only be pasted into applications
that support this data type.

You also can combine a classic QuickDraw picture and a QuickDraw GX shape to get the best of bot
worlds. If you select one of the types “Normal PICT”, “Embedded PostScript”, “Enlarged PICT” or
“Bitmap” and if you have QuickDraw GX and QuickTime™ installed, there appears a checkbox and a
pop-up menu titled “Add QuickDraw GX”:

(<] Add Quickdraw GH DT TEIL = g i]1T]
for screen & printer

Check this option if you want to add a QuickDraw GX shape to your classic QuickDraw picture. When
you print such a picture, the QuickDraw GX shape is used when printing through a QuickDraw GX
printer driver, while the classic QuickDraw picture is used otherwise.

If you chooséor printer only from the pop-up menu, the QuickDraw GX shape is ignored when the
picture is drawn on screen. If you chodee screen & printer, the QuickDraw GX shape is also
used for on-screen display when QuickDraw GX is installed .

At the bottom of the “Printing” panel in the Preferences dialog box, there is a button called “Standards”:

[Standards...]

Clicking this button brings up another dialog box that lets you store your settings in the preferences file
or load previously stored settings:

Printing 12-5

Saved PICT styles:

Laser Writer 320 -
Mormal

Save PICT stvle as:

PICT Settings

| pelete | [2] [cancel |

The upper part of the box lists all styles saved in the preferences file. To load a style, double-click it

name. To delete one or more styles, select their names (shift click for multiple selections) and click
Delete

To save your current picture settings as a PICT style, type a name in the edit item ebalvelick

If you save a style with the nam®rmal, it becomes thdefault style and it is loaded whenever you
start prd-it.

12-6 Printing

13 Preferences

proFit offers many possibilities to customize its features: You can choose the format for exporting
pictures, the preferred method for printing, you can save your preferred user interface options, etc. Al
of these settings are saved in pitts preferences file. During start-up gfib looks in the Preferences
folder of the System folder for its preferences file. If the file is therefipreads its standard settings
from it. If the file is not there, prBit creates a new preferences file. You can switch to another
preferences file or create a new preferences file anytime later.

If you do not want to load the standard preferences file in the system folder, hold down the option anc
the shift key while starting up pFat.

Most of proFit’s settings are controlled by choosing Preferences... from the File menu. Doing so brings
up a dialog box with severphnels Each panel controls a set of options. To choose a panel, select its
icon from the list in the left of the dialog box.

The panel$rinting andPICT Options are discussed in Chapter 12, “Printing”. In the following, we
discuss the panelSeneral, Drawing, Preview, Interface andPrefs File.

Panel “General”

This panel controls some general options for output, scrolling and data windows.

Preferences
- EI + # digits after the decimal point
7 — in numerical results: 4
enetal
Q] Results Window to front after output
Frinting + Default data window range:
"=t) =1e30..1e30 #® -1e300 ... 1e300
F'II::I' Dpt;n:nni Hel
Y + Help:
Ol [+ Show hints
D awing
F'r'.e-lﬁ.r.iew
® [0K]
alt
Interface |™ |£I [M /

The first item in this panel defines thedigits after the decimal pointused when displaying
numerical results. Enter a negative number if you want to set the total number of digits, a positive
number for setting the number of digits after the decimal points.

Preferences 13-1

The radio buttons under the tilleefault data window rangecontrol the default range and precision
of the numeric columns in new data windows. See the section “Data Types” of Chapter 4 for details.

Show hintscontrols if pro Fit should show some hints to guide an unexperienced user. Uncheck this
option if you don't want any hints to be shown.

Note that each hint also has an individual checkbox that can be used to diable it. If you uncheck and lats
check again “Show hints” in the Preferences dialog, all hints (also those that have been disable
individually) will be shown again.

Panel “Printing”

This panel is discussed in Chapter 12, “Printing”

Panel “PICT Options”

This panel is discussed in Chapter 12, “Printing”

Panel “Drawing”

This panel controls some options used by the drawing window:

Preferences
Bt EI + Format of labels in graph axes
General [] Typographical minus
Q] Comma instead of decimal point
Frinting Exponentials: @& 5107 (O 8x10% (O 8EQ
P|E}E§gnn5 + Defaultunits | cm 4 |
. [+ Automatic grouping of new graphs
L awing
W] Always use floating toolbox
F'r'.e-lﬁ.r.iew
® [0K]
«ll
Interface |™ |£| [M]

CheckTypographical minus if you want to use a longer dash (-) instead of the hyphen (-) as a
minus sign for numbers in the labels of a graph. Note that the typographical minus may not be availabl
on non-roman fonts.

CheckComma instead of decimal pointo use a comma as the decimal marker (12,345) instead of
a point (12.345).

Exponentials controls the style for drawing exponential labels.

13-2 Preferences

Note that changing the settings under “Format of labels in graph axes” does not affect the labels o
existing graphs. When you have changed the settings and want to use them for an existing grap
redraw the axis, e.g. by double-clicking it and clicking the button “Apply”.

Default units controls the default units used for measuring and entering distances in the drawing
window and the Drawing Info window.

CheckAutomatic grouping of new graphs if you want to automatically group a graph, the names
of its axes, and its legend when it is created. Uncheck this option if these items should not be grouped.

Check Always use floating toolboxif you never want the drawing tools to appear inside the
drawing window.

Panel “Preview”

This panel controls some options for the preview window:

Preferences

B ; + Data points

General Color [E Selection color [E
@ + Coordinate markers
FPrinting

.. Color [E Heference color [E

PICT Options + Coordinate lines

» I

S x= (0 y= |0
Craweing

- [+ Allow dragging of data points
Prewview

® [0K)

|FIEF?§E - 2 [CﬂﬂEEll li]

The first two pop-up menus define the colors ofdaé points (the points used for showing your
current data). The men@Qolor sets the color of the data points which are not part of the current
selection. The men8election colorsets the color of selected data points.

The second two pop-up menus define the colors of markers (for more information on markers, se
Chapter 6). The menGolor sets the color of all markers except the reference marker, the menu
Reference colorsets the color of the reference marker.

The Coordinate Lines are drawn in a light grey color in the preview window, behind the data points
and the function curve. They are two perpendicular lines that cross the x- and y- coordinate axes of th
preview at the coordinates given in the two edit fields.

Preferences 13-3

Check the optioAllow dragging of data pointsif you want to be able to change coordinates in a
data window by dragging the corresponding data points in the preview window. Uncheck this option to
disable this potentially dangerous option.

Panel “Interface”

Using this panel you can control some aspects of pro Fit's user interface.

Preferences

+ Lse Appearance services for:

M

General [+ Dialog boxes, alerts and windows
@ + Enable dynamic scrolling for:
Printing

[+ Data windows [Drawing windows
[+ Text windows

FICT Options

= u

Ok
Wiz

=2
=
1)
=
=)
w

Preview
® (0K

2% 2] (<o
Interface | /

Check the box undddse Appearance services foto enable the new “three dimensional” look
introduced with MacOS 8. This makes the background of all dialog boxes gray, adds shadows to mos
controls, etc. Drawing these elements takes more time than drawing plain black and white element:
Therefore, if you have a slow computer, you may want to uncheck this option.

The check boxes und&nable dynamic scrolling for control what happens if you click and drag

the indicator of a scroll bar. If the corresponding checkbox is checked, the contents of the window will
be scrolledvhile you drag the scroll bar. This provides a more accurate control of scrolling, but may be
sluggish on slower computers.

Panel “Prefs file”
Using this panel you can switch between preferences files or create a new preferences file:

13-4 Preferences

Preferences

Printing [New Preferences file...

FICT Options [Use Preferences file...

Interface

FPrefs File

Kim

(2] | cancel |

Click New Preferences filgo create a new preferences file. All the settings and extensions stored in
the current preferences file are copied to the new preferences file.

Click Use Preferences fileo switch to another existing preferences file. fitawill scan the folder

of the selected preferences file for a folder called “pro Fit modules”. If it finds such a folder, any
modules stored in this folder are loaded intoFto(For a more complete discussion of the Fito
modules folder, see Chapter 5, “Working with Functions”).

Preferences 13-5

14 General features

Getting help

proFit offers a powerful on-line help based on Apple Guide. Thé-prGuide can be accessed by
choosingpro Fit Guide from the help menu, or by clicking one of the question marks that are present
everywhere in pr&it windows and dialog boxes. Balloon help is also supported.

When defining functions and programs there is a special feature based on a dedicated help menu whi
is always present in the header of function windows. See chapter 9, “Defining functions and programs”
for more information on this help menu.

Help balloons
Switch on balloon help by choosing tBow Balloonscommand from the Help menu.

Once you have switched on balloon help, helpful comments show up whenever you move the mous
over some interesting item. Chodsele Balloonsfrom the Help menu to switch balloon help off.

Help Balloons can be switched on locally for the Help menus in function windows. They show helpful
information on the keyword currently selected in the menu.

The proFit Guide

The proFit on-line help system comes in a separate files calledlFit Guide andpro Fit
Programming. These files are found on your distribution disks and must reside in the same folder as
proFit. If proFit cannot find one of these file, then the corresponding on-line help is not available.

The main prd-it Guide can be accessed using the Help menu to the right of the menu bar.

As an alternative to this, there are lots of question marks everywhere Hit pralog boxes and
windows. Click any of these question marks if you need help in a particular situatidnt it
immediately display a floating window that can guide you through the operation at hand.

The pro Fit Programming guide provides help on all features of pits function and program
definition language. This Guide contains a detailed description of every predefined function or keyword.
The programming Guide can be opened directly at the page describing a given keyword, by selectin
that keyword in the function windottelp menu, or by option-double-clicking a keyword in the text of

a function definition.

On-line evaluation of mathematical expressions

Wherever prd-it expects a numerical input, such as in spreadsheets or dialog boxes, you can enter
mathematical expression. For example, instead of typing a number directly, you can use a mathematic
expression like “exp(1)” or “6+sin(pi/4)”. pket reads the mathematical expression you typed or pasted
and calculates the numerical result.

General features 14-1

Text windows, such as the result window, can be used as a calculator by typing an expression on a ne
line, positioning the insertion point on that line, and hitting the Enter key. The result is displayed on the
next line.

[0 =—Results =—H H
1/=grtoz s -
o.oM]
w100
70,7107

(]
i

You can also use mathematical expressions in afriptialog boxes. As an example, if you want to
tabulate a function between 0 and two tirpesat intervals opi/5 , type command-T and enter the
following:

Table of Polynom{x)

Tabulate by varying | x 2 |
Min: |0 Max: | 2=pi
Step:lm'ﬁ I{I].S, ‘auto’, ‘points®)

[] Use fitted parameters

(2] [cancel |

When typing a mathematical expression, you use the same syntax elements that are available wh
writing a function definition. In on-line mathematical expressianss, equal to the last result that was
evaluated, and[i] is equal to the parameter values shown in the current parameters window. You can
use all the predefined functions available when writing the definition of a function. As an example, after
a successful fit you can type 'ChiSquared' in a data window cell. This teR# poset the value of that

cell to the mean deviation obtained in the last fit (see Chapters 9 and 10, together with Appendix A, fo
more information on predefined functions).

Let's look at a simple example that illustrates how you can udat{ganderstanding of mathematical
expressions when you are pasting into a data window. Write the following text and copy it to the
clipboard:

a[2] - fittedParams(2)- a[2] — fittedParams(2). paramSD(2)
a[3] - fittedParams(3)- a[3] — fittedParams(3). paramSD(3)
a[4] - fittedParams(4)- a[4] — fittedParams(4). paramSD(4)

14-2 General features

Where the -’ stands for a tabulator character and each line is terminated with a carriage return (). If
you paste the above text into a data window after a successful fit, you automatically obtain a table
containing the parameter values before the fit, the values after the fit, their difference, and the resultin
standard deviations.

File info

proFit lets you save a comment with every one of its files. You can edit this comment witletthe
Info command from thé&ile menu. Choosing Get Info presents a dialog box with a large field for
editing text.

Infos about "Data 122"

These points were recorded using Finac's correction
Colurnns & and 4 give the temperatures at the end points.

ZSTI96 KE

| Cancel I

You can add an info comment to data windows, drawing windows and functions or programs.

The data windows let you view and edit this information directly, without using the Get Info
command. For this you drag down the info hook (a black area on top of the right scroll bar) of a date
window to create an info field of the desired size. See Chapter 4, “Working with data” for more
information on data windows.

D =———— Data IEEEE

Theze points were recorded using Finac's correction

Colurnns 5 and 4 give the temperatures at the end points=.
T/S496 KE

2 1IRS 1 T2 L. 3 o
k. Time [z] at T1 =
[1 1 200 012150 44

[2 1 400 052120 =5

[} z 1 600 1.00122 45

[4 1900 1 315200 sel |
[5 2 230 1.91234; 55w
PR | [v]

General features 14-3

Note that the info comments are in general only saved in files that hawpstandard formats. If you

save a function definition as normal text files (TEXT format) or if you save a drawing window as a
picture or EPS file (PICT format, EPSF format), the info comments are not saved. If you save a data fil¢
as TEXT, you have the option of placing the info comments right at the beginning of the text file, as a
header. To set this option, you have to choose “Custom format” in the dialog box that comes up whe!
saving text files.

Find and Replace

proFit provides Find & Replace features to help you navigate through text. This feature is available for
the results window and all function windows. You will find it most useful when you are editing the
definition of a function or a program inside a function window.

The Find & Replace commands are found in the Edit menu:

Find... OHHF
Find Again S HO
Enter Selection O ®E
Replace £ ¥#ER
Replace & Find Again <3H
Replace All

When you choosEind... the Find/Replace dialog box appears:

Find / Replace

Find al3]

Replace Ia[l] I
[+ lgnore case #® Forward
] Whole words only i » Backward

| Replace All | | Done | [2] | cancel |

Type the text you are searching for and the replacement text HinthendReplaceedit fields. Use
the radio button&orward/Backward to start the search by moving down from the current insertion
point towards the end of your text, or up towards the beginning. Clidkrtdebutton to start a search,
click Done if you don’'t want to start a search yet. CIRkplace Allto replace all the occurrences of
the text appearing in the Find item with the text appearing in the Replace item.

Use the menu commariehter Selectionto enter the currently selected text in the Find field of the
Find&Replace dialog box. Choodeind Again to restart a search (the fastest way to find all
occurrences of a text is to select it and choose Enter Selection and Find Again in rapid succession). U
Replaceto replace the current selection with the text in the Replace field of the Find&Replace dialog

14-4 General features

box. Replace and Find Againcombines the last two commandReplace Allis equivalent to the
Replace All button in the Find dialog box.

Note that by using the Enter Selection command, or by copying some text and pasting it into the Finc
and the Replace field, you can enter text that you cannot enter by typing in the dialog box, such a
carriage returns () and tabs).

These commands can be accessed by using the following key combinations:

Find... shift + command + F
Find Again shift + command + G
Enter Selection shift + command + E
Replace shift + command + R
Replace & Find Again shift + command + H

These command key equivalents are displayed in the Help Balloons for the corresponding menu items.

Shortcuts and other options

Although most of préit's features and commands are readily accessed through its menus, there are
some more advanced or rarely used features that require the use of modifier keys like the option key, t
command key, or the shift key.

This is a short list of these features:

action modifier keys
* Pressing ‘F shift & command
to select ‘Find..." from the Edit menu.
* Pressing ‘G’ shift & command
to select ‘Find Again’ from the Edit menu.
* Pressing ‘E’ shift & command
to select ‘Enter Selection’ from the Edit menu.
* Pressing ‘R’ shift & command
to select ‘Replace’ from the Edit menu.
* Pressing ‘H’ shift & command
to select ‘Replace & Find Again’ from the Edit menu.
* Pressing ‘D’ command

to dismiss the “Do you want to save changes to...” dialog box.
Keyboard equivalent of typing the “Don’t Save” button.

» Selecting a tool in the tools option
palette of drawing windows to keep the tool selected after drawing the corresponding object.

» Dragging objects in drawing command
windows to constrain the movement along’ 4ises.
shift
to constrain the movement to horizontal and vertical directions.
option
to duplicate an object instead of simply moving it.
» Drawings objects in drawing option or shift
windows to get a square bounding box.

General features 14-5

» Drawing lines in drawing
windows

» Drawing polygons in drawing
windows

* Resizing objects in drawing
windows

* Resizing lines in drawing
windows

» Clicking objects in drawing
windows

 Clicking graphs in drawing
windows

* Reshaping polygons in
drawing windows

shift

to make the line horizontal, vertical or diagonal (&) 45

option

to make a diagonal line

option, shift

same as for lines

commanddouble-click

to produce a corner that remains a corner even when the polygon
IS smoothed.

option

to keep the bounding box of the object square (height=width).
shift

to maintain the horizontal and vertical proportions of the object,
its height, or its width.

command

to resize the size of texts in a group.

option

to get a line constrained to 48irections.

shift

to maintain the direction of the original line, or to make the line
vertical or horizontal

shift
to select an object without de-selecting other already selected
objects.

option & command + click

to see the plot coordinates of the point you are indicating with the
cursor.

option & command click, and then presshift

to select an area of the graph to be enlarged.

command double-click

to make a graph the ‘current graph’.

command & shift double-click

to remove the ‘current graph’ setting.

option click (a connecting line)

to insert a new polygon point.

option click (a point)

to delete it.

hold down theeommandkey while dragging a single point

to let the selected point coincide with the nearest neighboring
point.

14-6 General features

Using the line style pop-up shift
menu in a drawing window to to change the line styles of all the lines in the legend.
change the line styles in a option
legend to change the line style and set the attribute ‘points connected’ for
the data plot in the first row of the legend.
shift & option
to change the line styles of all the lines in the legend and set
‘points connected’ for all data plots.
Using the point style pop-up shift
menu in a drawing window to to change the point style of all the data plots in the legend.
change the point styles in a

legend
Clicking a cell in a data option
window to select the whole column above the clicked cell.

shift
to enlarge a selection.

Clicking the column number command
cell in a data window to set the default columns (x,4x, Ay) using a pop-up menu.

Clicking on the ‘larger font option
size’ controls in the text-edit to increase the font size by 1 pt only .
dialog box

Clicking on the option
‘subscript/superscript position’to change the vertical position of the selected text by 1 pt only.
controls in the text-edit dialog

box

Choosing ‘New Function’ option

from the file menu to open a new definition window containing a sample function
definition.
option/shift
to open a new definition window containing a sample program
definition.

Importing text files option

to tell proFit not to ask for information and to open the text files
as data files using the current settings.

Saving a drawing as an EPS option
file. to create a TEXT file containing the PostScript information.

Using lists in dialog boxes shift click, shift and drag
(e.g. the y-column list in the to select more than one item.
plot data dialog box). shift click

to de-select an item.

Clicking with the lens tool in commandto drag a selection rectangle specifying the region to

the Preview Window enlarge.
option to zoom out instead of zooming in

General features 14-7

» Selecting an item from the Helpption

menu in a Function window

» Clicking a marker in the
Preview window

* Moving a marker with the
arrow keys in the Preview
window

» Using the left and right arrow
keys in a data window

 Clicking in the data window

« Starting prd-it

to paste the template with a ;' and a carriage return
command

to enable pasting templates and disable help panels
shift

to enable help panels and disable pasting templates
option

to transform the clicked marker into the reference marker
option

to let the marker go outside the ranges of the preview.

option
to move the insertion point by one character within the active data
cell.

command
to create a discontinuous selection

option and shift
in order not to load the standard preferences file

Another commonly used shortcut is typing a period (*.") while holding down the command key. This is
equivalent to typing the escape key and it interrupts most of the calculations. Use it to stop the plotting C
a function, to stop fitting, to cancel printing, or to interrupt lengthy calculations.

The combination Command-key/period is also interpreted as typing ‘Cancel’ in dialog boxes. The escap
character is also interpreted as ‘Cancel’. Return or Enter are always interpreted as clicking the outline

button.

14-8 General features

Appendix A: Predefined functions,
procedures and arrays

When programming in piiéit, you can use a large number of predefined functions and procedures. The
first part of this appendix gives a short list of these functions and procedures ordered in functiona
groups. The second part of this appendix provides a full description of each function or procedure ir
alphabetical order.

Note that the pro Fit compiler ignores upper/lower case SieeColumnName is identical to
setcolumnnamE . An exception to the above rule applies when you call other functions or want to
execute menu commands. In that case the strings you specify for the names of the functions or met
commands are case-sensitive.

All the predefined functions and procedures described here are also available to external modules.
some cases, to avoid conflicts with the names of Mac OS routines, the names used in the extern
modules interface filep(oFit_interface.h and proFit_interface.p) can be slightly
different from the names used in pro Fit's function windows. Unless the difference between the name:
is very small and obvious, external modules names are also found in the alphabetical listing at the end «
this chapter.

Some predefined functions provide advanced features and are only available for external modules.

Routines only available for external modules are marked with a "*" in the following functional groups
descriptions.

To get a fast look at what you can do in afitgrogram, go through the following functional group
descriptions. To get details on a certain function, see the alphabetical list which follows.

Functional groups

Operators
+ - % / addition, subtraction, multiplication, division
*x A power
= <> >= > equal, not equal, larger or equal, larger, smaller or equal, smaller
<= <
and, or logical and, logical or
not logical not

Note that the power operatdr” (‘' is a synonym) is evaluated as
x*y =x"y= exp(y*In(x))
Therefore, x must be positive.

The evaluation of this expression can be rather slow. If you want to calculate simple
integer powers, e.g.2>or x3, use expressions suchsag(x) orsqr(x)*x.

Appendix A: Predefined functions, procedures and arrays A-1

Mathematical functions and constants

sin, cos, tan,
arcsin, arccos, arctan

sinh, cosh, tanh,
arsinh, arcosh, artanh

erf, erfc

In

log

exp
tento
sqr, sqrt

Gamma, Gammal, Gammaln,
GammaP

1 (or pi), true, false,
INF, -INF

invalidNum

Data processing

Statistics

Sort, ReduceData
FFT, InverseFFT
DataTransform

Transpose

Accessing the data window

datali,j],

DataOK,

ClearData,

TestData *,SetData *,
GetData *

GetCell, SetCell

SetDefaultCols,
SetDataWindowProperties

xColumn, yColumn,
XErrColumn, yErrColumn

trigonometric functions, (arguments or results in rad)

hyperbolic functions

error function
erfc is the complementary error function: erfc

=1—erf
natural logarithm

base 10 logarithm

exponential function, eX

power of ten, 10X

square, square root (x2. VX)

Gamma function and incomplete gamma function
constants

an invalid number. Used to mark empty data cells in a data window.

run statistical analysis, get results
sort, smooth or reduce data

FFT and inverse FFT

general data transfomations

transposing rows and columns

an array and some routines for accessing the data in the current data
window

setting and reading cell contents, including text-cells.

set the default x, y, Ax, and Ay columns and the number of columns
and rows in the current drawing window.

the column numbers of the x, y, Ax, and Ay columns in the current
data window

A-2

Appendix A: Predefined functions, procedures and arrays

NrCols, NrRows, information on the selection area and the size of the current data

SelectLeft, SelectTop, window
SelectRight,

SelectBottom

GetSelection

SelectCell, SelectRow, set the selection and check if a single cell or a row is part of a
SelectColumn, (possibly discontinuous) selection.

RowSelected, CellSelected

GetColName, SetColName, obtain and write titles of single columns and other column
GetColType, SetColType, characteristics.

SetColWidth, ColEmpty

GetDefaultData ~, obtain column data in a single step from external modules.
GetColHandle *,

SetColHandle "

All the above calls access the current data window. By default, the current data window is the frontmos
data window. You can make another data window the current data window by calling
SetCurrentWindow(windowID) with windowID being the window ID of the desired data
window.

Input and output

Input, SetBoxTitle displays a dialog for entering numerical values

Ask, Alert show alert boxes

Write, Writeln these procedures write into the results window

CreateTextFile, open and close text files, and redirect the output of the write, writeln
CloseTextFile, functions to a text file.

WriteToTextFile

Drawing
SetLineStyle, set the style of future drawing calls

SetLineColor,
SetFillColor,
SetFillPattern,

SetDataPointStyle,

SetBGDataPointStyle

SetArrowStyle,

SetTextStyle

MoveTo, LineTo, Move, produce line drawings in the drawing window.

Line, DrawLine
OpenPoly, ClosePoly collect line-drawing calls to define a polygon

Appendix A: Predefined functions, procedures and arrays A-3

DrawLine,DrawDataPoint, create single drawing objects in the current drawing window.
DrawPICT *, DrawRect,

DrawEllipse, DrawArc,

DrawText, DrawNumber

GroupBegin, GroupEnd group drawing objects.

DisableDrawingUpdates inhibit updates in the current drawing window until a program is
finished.

GetSelectionBounds find the rectangle corresponding to the boundaries of the current

selection in the current drawing window

GetClickedCoord find the last clicked point in the current drawing window.

All the above calls access the current drawing window. By default, the current drawing window is the
frontmost drawing window. You can make another drawing window the current drawing window by
calling SetCurrentWindow(windowID) with windowID being the window ID of the desired
drawing window.

The drawing routines work on a coordinate system that has its origin on the top left of the paper. Unit:
are 1/72 inch.

The following program creates a “bull's eye” at the point where you last clicked
in the drawing window:

program BullsEye;
const radius = 40; step = 8;
var x0, y0, t: real,
begin
GetClickedCoord(x0, y0);
GroupBegin;
t := step;
while t<=radius do
begin
DrawEllipse(x0-t,y0-t,x0+t,y0+t);
t ;= t+step;
end;
MoveTo(x0-radius*1.1, y0);
LineTo(x0+radius*1.1, y0);
MoveTo(x0, yO-radius*1.1);
LineTo(x0, yO+radius*1.1);
GroupEnd;
end;

The drawing routines accept floating point numbers as parameteFst pses a precise floating point
coordinate system for drawings, and drawings created from a program will print at the highest
resolution on all output devices.

A-4 Appendix A: Predefined functions, procedures and arrays

Plotting in a graph

PlotData, PlotFunction plot a data set or a function.

SetLineStyle, set the line style (line thickness, color...) of future line-plots and the
SetLineColor, style of future data points.

SetFillColor,

SetFillPattern,
SetDataPointStyle,

SetBGDataPointStyle

SetCurveFill, set the filling options of plots and the appearance of error bars for
SetEBarStyle the next curve or data set added to the current graph.
OpenCurve, start/end the definition of curves or data sets for the current graph

CloseCurve, OpenDataSet,
CloseDataSet

AddDataPoint, add a data point (possibly including error bars) to the current data
DrawDataPoint set.

MoveTo, LineTo, Move, define a curve in the current graph.

Line

All the above calls access the current graph. To make a graph the current graph, double-click it whil
holding the command key down. From a program, you can use ti8et@lirrentGraph to make a
graph the current graph.

The following is a small example program drawing a Lissajous figure in the drawing window:

Appendix A: Predefined functions, procedures and arrays A-5

program Lissajous;
var xmin, xmax, ymin, ymax;

centerH, centerV, {center of the figure}

radiusH, radiusV; {and its radius}

angle;
begin
xmin:=1;xmax:=3;
ymin:=2;ymax:=5;

CreateNewGraph(xmin,xmax, ymin,ymax, false,false);

centerH := (xmin+xmax) / 2;
centerV := (ymin+ymax) / 2;
radiusH := (xmax-xmin) * 0.4;
radiusV := (ymax-ymin) * 0.4;
SetlLineStyle(1,2);

OpenCurve('Circle");

MoveTo(radiusH+centerH, centerV); L

angle :=0;
while (angle <= 2*pi) do
begin

5'0 1 1 1 1 1 1 1

sol w0 e

30 | . “"__‘...‘__.-“ -........,...::: .

2t

0

20 1 | 1 | 1 | 1
1.00 1.50 2.00 2.50

LineTo(radiusH*cos(3*angle)+centerH, radiusV*sin(2*angle)+centerV);

angle := angle + pi/40;
end;
CloseCurve;

SetLineStyle(1,1);
end;

Creating and accessing graphs

SetNewGraphRect

CreateNewGraph

GetCurrentGraph,
SetCurrentGraph,
GetNextGraph

Editing the current graph

SetGraphAttributes

SetlLegendProperties

GetGraphFrame,
SetGraphFrame

sets the default size and position of graphs created with
CreateNewGraph.

creates a new graph in a drawing window.

obtain a unique identification number for a graph and use it to
access different graphs.

set various options that determine the appearance of the current
graph.

set visibility, position and size of the legend of the current graph.

get/set the position and size of the current graph.

A-6

Appendix A: Predefined functions, procedures and arrays

GetGraphCoordinates returns the ranges of the main axes in the current graph

SetRange, MakeTicks, change the range, ticks, position, labels format, and various drawing
SetLabelsFormat, options for the current axis.

SetAxisPosition,

SetAxisAttributes

MakeNewAxis, create/kill coordinate axes in the current graph and change the
GetCurrentAxis, current axis used to define a new curve or data set.
SetCurrentAxis,

DeleteAxis

ClearTicks, ClearLables, define a custom list of tick marks and/or labels.

AddTick, SetlLabel,

SetLabelText

All the above calls access the current graph. To make a graph the current graph, double-click it whil
holding the command key down. From a program, you can use tl8et@lirrentGraph to make a
graph the current graph.

Some of the above routines use or change the axes of a graph. They accesemihe-axisor the
current y-axis To make an axis the current x-axis, &dtCurrentAxis(xAxis,i) , Wherei is the
number of the axisSetCurrentAxis(xAxis,2) sets the current x-axis to X2). To make an axis
the current y-axis, caetCurrentAxis(yAxis,i)

Calls that work on the current axes S8etAxisPosition , SetLabelsFormat , etc. The following
code changes the position of the X2 axis of the current graph:

SetCurrentAxis(xAxis,2); {2nd x-axis}
SetAxisPosition(xAxis,0.5);

Setting default parameters

SetParameterProperties Sets the value, name, limit and mode of a parameter
This routine is usually called in the procedinitialize of a function. It allows to set the settings of
a parameter that are given in the Parameter window.

Example:SetParameterProperties provides an alternative to tldefaults statements (for
external modules, it provides an alternative to setting the various default values and names by hand).

Appendix A: Predefined functions, procedures and arrays A-7

function foo;
procedure Initialize;
begin {initialization of param values, etc. }
SetParameterProperties(param 1,
value sin(pi/4), mode paramActive,
name 'pi',min 0, max inf);
end;
begin {function definition}
y:=a[1]-sin(x);
end;

Using other functions or programs

CallFunction, call a function or execute a program.
CallProgram

SetFunctionParam, access other functions’ parameters.
GetFunctionParam,

GetFunctionParamMode,

GetFunctionParamName

GetNumFunctionParams

SetFunctionProperites hide/show function in preview window
GetFunctionName get name of current function
SelectFunction, select or delete a function or program

DeleteFunction,

DeleteProgram

GetGlobalData, passing data between programs and/or functions
SetGlobalData

LoadParameterSet, controlling the parameter set menu

SaveParameterSet,
UseParameterSet,
DeleteParameterSet,
AddParameterSet

The following example program copies the active parameters of the current function to the first column
of the current data window. It also calls a function calldingeUnit to calculate new parameter
values that it stores in the second column. Before uSmangeUnit , it sets the value of its first
parameter to zero.

A-8 Appendix A: Predefined functions, procedures and arrays

program CopyParams;
var icinteger;
pa:extended;
begin
SetFunctionParam(‘changeUnit',1,0.0);
for i:=1 to GetNumFunctionParams(") do
if GetFunctionParamMode(",i)=active then
begin
pa:=GetFunctionParam(",i);
datali,1]:=pa;
datali,2]:=CallFunction('ChangeUnit',pa);
end;
end;

Numerics on functions

Integrate, calculate the integral and the derivative of a function
Tabulatelntegral,
Derivative
Root, TabulateRoots calculate roots
Fit set fitting, below.
Optimize, Extrema, find extrema of a function by varying its x-value and/or its parameters
TabulateExtrema
Tabulate tabulate functions
Fitting
Fit runs a fit.
GetResult retrieves the results.

The following example runs a fit and prints some of the results:

Appendix A: Predefined functions, procedures and arrays A-9

program DoFit;

var i, nrParams:Longint;

begin

Fit(function Sin, algorithm levenberg, xColumn 1,

yColumn 2);

Writeln('chi squared: ', GetResult(chiSquared));
nrParams := GetResult(chiSquared);
Writeln('number of parameters: ', nrParams);

fori:=1 to nrParams do

writeln(" ', GetResult(fittedParameter, i));

end;

Using Windows and Documents

NewDataWindow,
NewFunctionWindow,
NewDrawingWindow

GetWindowlID

FrontWindow,
FrontmostWindow

GetWindowType,

SetCurrentWindow,
GetCurrentWindow,
NextWindow

GetWindowTitle,
SelectWindow
OpenFile

SaveWindow

GetFileDirectory
SetDefaultDirectory

CloseWindow

DatalmportOptions,
DataExportOptions

SetWindowProperties
Compile, DoScript
PageSetup, Print

open a new data, function, or drawing window

obtain a unique identification number for a window from its title

obtain the ID of the document window in front of all others

check if a window is a drawing window, a data window, or a function
window.

change the window currently used for program input/output.

access the title of a window.
Bring window in front of all other windows
open a document and put it inside a new window

save a window's contents into an existing or a new pro Fit
document

Get the directory where a given file resides. Set the default directory
used to save files without a full path name.

close a window.

set the format for loading and exporting text files

Set the info-text, size, title, position, etc. of a window.
compile/run the contents of a function window

specify document format and print

A-10 Appendix A: Predefined functions, procedures and arrays

Note: Windows are usually accessed by window ID. A window ID is a unique long integer number
assigned to each window. You can obtain a window ID by caBieiyVindowID, FrontWindow,
FrontmostWindow, GetCurrentWindow . The following example sets the name of the frontmost
data window to “favourite data”:

program SetWindowName;
var windowID: longint;
begin
windowlID := FrontmostWindow(dataType);
SetWindowProperties(window windowID, hame
‘favourite data’);
end;

Note: The Results, Parameter and Preview windows always have the same window ID:

Results: window ID = -1
Parameters: window ID = -2
Preview: window ID = -4

The window IDs of data, text and drawing windows are always larger than 0.

String and character manipulation

Ord, Chr convert between (extended) ASCII codes and characters.
Length returns the length of a string.

Delete deletes parts of a string.

Pos finds a pattern in a string.

UpperString, LowerString converts between upper- and lower case strings.
NumberToString, convert between numbers and strings.

StringToNumber

Appendix A: Predefined functions, procedures and arrays A-11

Miscellaneous auxiliary routines

Random

Invalid

TickCount, DataString,

TimeString
Beep
SpeakString

Button, KeyPressed

GetClickedCoord

MarkedX, MarkedY,

GetMarkedCoord
Undo, Cut, Copy, Paste,

Clear, SelectAll
DoMenu

Capture

SetWalitTitle, SetWaitText

Advanced routines for external

NumberToStr255

*

Str255ToNumber *

GetModuleFile

DeactivateProFitWindows*
ActivateProFitWindows

GetDefaultData

GetColHandle
SetColHandle

HandleEvent
CancelEvent

*

returns a random number between 0 and 1.
checks if the result of a calculation is a valid number.

return the number of ticks (1/60 seconds) since start-up and today's
date and time

lets your computer emit an alert sound.

lets your computer speak out loud a text string.

check the mouse button and the keyboard

find the last clicked point in the current drawing window.

find the position of coordinate markers in the preview window
execute edit menus

execute a menu command
redirect output of results window to file

set the text displayed in pro Flt's progress window, shown during
lengthy operations.

modules only

conversion

find a module's file

tell pro Fit that a module is opening a window of its own.

Get the current x- and y- data

Get and set in one step all the data contained in a column

event processing

A-12 Appendix A: Predefined functions, procedures and arrays

Alphabetical list

Abs
function Abs(x:extended or complex):extended,;

Returns the absolute value of x.

ActivateProFitWindows
procedure ActivateProFitWindows;

External modules only. Activates pro Fit's frontmost window and enables the menus. Call this routine
after closing a window or a dialog that you created from an external module. Each call to
ActivateProFitWindows must be preceded by a callbectivateProFitwindows

AddDataPoint
procedure AddDataPoint(x,y,XErrl,yErrl,XErr2, yErr2: extended);

Adds a new data point to the current data set in the current graptly are the coordinates of the new
data point,xErrl andyErrl, (XErr2 andyErr2) the lengths of the (asymmetric) error bars.
Depending on the parameters passedp@nDataSet , the parameterserrl throughyErr2 may be
ignored.

Call openDataset before callingaddDataPoint . The style and size of the data points can be set using
the routineSetPointStyle

See als@rawDataPoint

AddParameterSet
procedure AddParameterSet(optional parameter list);
Adds the parameters that currently appear in the Parameter window to the parameter set men
Parameters:
set(String)The name of the set.
forAll (Boolean)True if the parameter set is to be available for all functions, false if the parameter set
is only to be available for the current function. (Default: false)
permanent (Boolean)true if the parameter set must be added permanently to the menu, i.e. if it will be
still available after a quit and restart. (Default: true)
See also: UseParameterSet, SaveParameterSet, LoadParameterSet, DeleteParameterSet

AddTick
function AddTick(whichAxis:integer; tickPos:extended,;
iIsSMajor:Boolean):integer;
Adds a tick at the positiotickPos to the current axis, makes it a major ticksiflajor is true.
whichAxis IS eitherxAxis oryAxis .

Alert
procedure Alert(s:Str255);

Presents a dialog box displaying the string s.
Example: Callingulert(Incomplete data.’) opens the following window:

Appendix A: Predefined functions, procedures and arrays A-13

Incomplete data.

|5tup|| I‘JKI

If you click ‘OK’ the program continues, if you click ‘Stop’ the program will be stopped.
In external modules, this routine is calkgertBox

AlertBox
function AlertBox(s:Str255):Boolean;

External module name. Sarrt. In external moduleslertBox is a function, and it returnaie if
the Stop button was clicked

arccos
function arccos(x:extended):extended;

arccos returns the arcus cosine (the inverse cosine) of x. Causes a run-time error if |[x| > 1

arcsin
function arcsin(x:extended):extended;
arcsin returns the arcus sine (the inverse sine) of x. Causes a run-time error if |x| > 1

arctan
function arctan(x:extended):extended;
arctan returns the arcus tangent of x

arcosh

function arcosh(x:extended):extended,;

arcosh returns the inverse of the hyperbolic cosine of x. Causes a run-time error if [x| < 1. arcosh is
defined by

arcosh(x) = In(x+ \/XT—l)

arsinh
function arsinh(x:extended):extended,;
arsinh returns the inverse of the hyperbolic sine of x. arsinh is defined by
arsinh(x) = In(x + X% + 1).
artanh

function artanh(x:extended):extended,;

artanh returns the inverse of the hyperbolic tangent function of x. Causes a run-time error if [x| > 1.
artanh is defined by

[x+10]
artanh(x) =Ing | ——
() x1 %

A-14 Appendix A: Predefined functions, procedures and arrays

Ask
function Ask(s:Str255):Boolean;

Presents a dialog box displaying the string s. The box has a Yes and a No button. If the user clicks Ye
ask returns true, if he clicks No, ask returns false.
Example: Calling Ask('Continue transformation ?') displays the following window:

,-'E Continue transformation ?

| 1] I Yes

In external modules, this routine is calkes#Box .

AskBox
function AskBox(var retval:integer; s:Str255):Boolean;

External Module name. Seek. The return values depend on the button that was clicked:
* Yes button: retval is 1 andAskBox returnsfalse
* No button: retval is 0 andAskBox returnsfalse
o Stop button: retval is undefined anédskBox returnstrue .

If AskBox returns true, you should stop executing your function or program.

Beep
procedure Beep;

produces an alert sound.

BringWindowToFront
procedure BringWindowToFront(windowlID: longint);
Obsolete UseSelectWindow instead.

Moves the specified window in front of all other windows. windowID is a window id, such as itis e.qg.
returned byGetwindowID Or GetCurrentWindow

Button
function Button:Boolean

Returns true if the mouse button is pressed.

CalcStat
function CalcStat(column:longint;
selRowsOnly,withBasics,withSkewAndKurt,
withMedian:Boolean):Boolean;

ObsoleteUse Statistics instead.

Runs a statistical analysis on the numbers in the current data window. The results of the calculations c:
be accessed using the routines GetBasics, GetMedian, and GetSkew.

CalcStat returns false if an error occurred, true if the calculation completed correctly. Set column to O t
include all columns, set it to -1 to use the current selection. Set selRowsOnly to true if you only want to
analyze the currently selected rows.

Appendix A: Predefined functions, procedures and arrays A-15

If you consequently want to use the results of GetBasics, set withBasics to true. If you want to use th
results of GetMedian, set withMedian to true. If you want to use the results of GetSkew, set
withSkewAndKurt to true.

CallFunction
function CallFunction(name:Str255;x:extended):extended;

Calls a function from the Func memame is the name of the function as it appears in the menu. This
parameter is case sensitive. Pass an empty string to call the currently selected fisctienx-value
passed to the function.
CallFunction ~ causes a run-time error if the specified function does not exist.
Example:

k:=CallFunction('Polynom’, 1.23)

m:=CallFunction(",0);
k is set to the value of the built-in function Polynonxat.23 , using the parameters as given in
Polynom’s parameters windowsis set to the value returned by the currently selected functians.at
If you want to set a parameter of the function before calling it, use SetFunctionParam.
In external modules, after you calllFunction you should calfrestStop to check if the called
function has interrupted execution.

CallProgram
procedure CallProgram(name:Str255);

Calls a program, module or AppleScripime is its name as it appears in the Misc menu. .i.programs
;.l.macros ;.i.scripts;

causes a run-time error if the specified program or script does not exist. Noiarikat case-sensitive.

In external modules, after callingallProgram , you should calfrestStop to check if the called
program has interrupted execution.

CancelEvent
function CancelEvent(var theEvent: EventRecord):Boolean;

External modules only. For advanced programming. Retwras if the given event is a key down
event for the escape-key or for command and ‘.’

Capture
procedure Capture(optional parameter list);
Controls redirection of results window to a text file. Parameters:
file (String) The file to capture the window into. Use a simple name or a file

path. If you pass this parameter, a new capture file is opened and
capturing starts. Omit this parameter when passing the parameter ‘option’.
option (Integer)captureOn (= start capturing into the fileaptureoff (= stop
capturing but leave capture file operhptureClose (= stop capturing
and close capture file) . Omit this parameter when passing the parameter
file’.
Example:
Capture(file 'myFile");
now, output is redirced to the given file
Capture(option captureOff);
now, output to the file is temporarily suspended
Capture(option captureOn);
now, output to the file is again turned on

A-16 Appendix A: Predefined functions, procedures and arrays

Capture(option captureClose);
now, output to the file is turned off and the file is closed

CellSelected
function CellSelected(row,column:longint)Boolean;

Returngrue if the given cell in the current data window is selected

ChiSquared
function ChiSquared:extended,

Returns th% value of the mean deviation funcjtgnobtained in the last fityg is the mean square
deviationy “ if the last fit was performed using Gaussian distributed errors. Otherwise it is the value
obtained by applying whatever deviation function must be applied for the given error specifications. See
chapter 8, “Fitting”, for more details.

Causes a run-time error if the last fit was not successful. You can check if the last fit was good using th
functionnumFitParams .

Chr
function Chr(i: integer):char;
Converts the given (extended) ASCII code i to a character.
Clear
procedure Clear,;
Equivalent to selecting “Clear” from the “Edit” menu.
ClearData

procedure ClearData(row,col:longint);

Removes any numerical value in the given cell (row/column) of the current data window and leaves at
empty cell.
Causes a run-time error if no data window is open or if the given cell lies outside the bounds of the list.

ClearLabels
procedure ClearLabels(whichAxis:integer);

Kills all labels in the current axisvhichAxis IS eitherxAxis oryAxis .

ClearTicks
procedure ClearTicks(whichAxis:integer);

Kills all ticks in the current axis. Call before usimgiTick . whichAxis IS eitherxAxis oOryAxis .

CloseCurve
procedure CloseCurve;

Stops data collection for the current curve.

CloseDataSet
procedure CloseDataSet;

Stops data collection for the current data set.

ClosePoly
procedure ClosePoly;

Stops data collection for the current polygon, opened by calpagPoly

Appendix A: Predefined functions, procedures and arrays A-17

CloseTextFile
procedure CloseTextFile(fileRefNumber: longint);

Closes the given text filéleRefNumber is the reference number returneddoyate TextFile

CloseWindow

procedure CloseWindow(optional parameter list)
Closes a window. Parameters:
window (Longint or String) The name or window ID of the window.
Default: Front window
saveOption (Integer)saveToFile (= always save into its filejlontSave (= never

save),askUser (= if window has been changed, ask user if it should be
saved). Default iaskUser .
There is also an obsolete version of CloseWindow, which is supported for compatibility with older
versions. Do not use it in new programs:

procedure CloseWindow(windowlD:longint; savelt:Boolean);

Setsavelt tofalse if you do not want to save the window, even if it was changedowID specifies
the window.
This procedure cannot be called while a function is running.

ColEmpty
function ColEmpty(columnNumber:longint)Boolean;

Returns true if the given column of the current data window doesn’t contain any data.

Compile
procedure Compile(windowlD:longint);
Compiles the given text window. Equivalent to choosing “Add to Menu” from the Misc menu. Generates

a run time error ifvindowlD does not belong to a function window, or if a syntax error occurs.
windowID is a window id, such as it is returned @stwindowID Or FrontWindow .

Compl
function Compl(rl,r2: extended)complex;
Returns the complex number with rl for real part and r2 for imaginary part.

Confidencelnterval
procedure Confidencelnterval(i:integer;var min,max:extended);

Returns (inmin,max) the confidence interval for parameiteas it was calculated in the last fit.

Note that this routine does not return meaningful results if the confidence interval for a given value was
not determined, e.g. because the given parameter was not active during a fit or because the chosen fitti
algorithm did not calculate confidence intervals.

See alsoparamSD

Conj
function Conj(z: complex)complex;

Returns the complex conjugate of z.

Copy
procedure Copy;

Equivalent to selecting “Copy” from the “Edit” menu.

A-18 Appendix A: Predefined functions, procedures and arrays

cos
function cos(x:extended):extended,;

Returns the cosine of x.

cosh
function cosh(x:extended):extended

Returns the hyperbolic cosine of x. cosh is defined by
X
cosh§) = exze— .

CovarMatrix
function CovarMatrix(i,j:integer):extended,;

Returns the values of the covariance matrix obtained in the lasafitdj are the indices corresponding

to the parameter numbers.

CovarMatrix ~ returns an invalid number (NAN: Not A Number) ibrj corresponds to a parameter that
was not active during the last fit. You can test the validity of the return value using the function
Invalid.

Causes a run-time error if the last fit was not successful ¢y iéire out of range. You can check if the
last fit was successful by using the functiamFitParams .

CreateNewGraph
procedure CreateNewGraph(xmin,xmax,ymin,ymax:extended;
xScaling,yScaling:integer);
Creates a new graph in the current drawing windew,xmax,ymin,ymax are the ranges of the graph
axes.xScaling ,yScaling must be set to either 0,1,2, or 3 for linear scaling, logarithmic scaling, 1/x
scaling and probability scaling, respectively.
Causes a run-time error if there is no drawing window or if the ranges or axes styles are inconsistent.

CreateTextFile
function CreateTextFile(fileName:Str255):longint;
Creates a text file with the given name and returns a reference number used to identify this file. Cal

WriteToTextFile to redirect the output from calls Yarite /writeln /writeNumber into this file and
useCloseTextFile to close the file when you are through.

Cut
procedure Cut;
Equivalent to selecting “Cut” from the “Edit” menu.

data
array datafrow,col:longint] of extended
This array holds the data of the current data window. Assigning a vatiagap@w,col] sets the
value of a cell in this window. Reading the arlla[row,col] returns the value of a cell. Causes run-

time errors if the data cell is not within window, if the cell is empty, if the cell is part of a text column, or
if no data window is open. Always calhtaOK(row,col) before using the value o4ta[row,col]

The arraydata does not exist for external modules. External modules must use the ragtiDasa
andGetData for numeric cells andetCell andsSetCell for text cells. In addition to this, the routines
GetDefaultData , GetColHandle andSetColHandle provide some fast low-level access.

DataExportOptions
function DataExportOptions(optional parameter list);

Sets the options for exporting data windows as text files.

Appendix A: Predefined functions, procedures and arrays A-19

Parameters:
mode Specifies the basic format. Pass withTitles (for standard format with
column titles) , withoutTitles (for standard format without column titles) ,
or customFormat (for a customized format as specified in the following

parameters) .
withTitles (Boolean)Add the text from the info field to the beginning of the file.
copylnfo (Boolean)Write the text from the info field.
optimize (Boolean)Remove leading spaces and trailing zeros in all numbers.
delimiter (String)Column delimiter, at least 1 character. Typical values are:

- '\t' which defines a tabulator (decimal 8),
- " "which is a simple space,
- " which is a simple comma,
- Any combination of characters and '\t'.
Usually, \n' (line feed) or "\r' (carriage return) should not be used.
terminator (String)Line terminator appended after each row, at least 1 character.
Typical values are:
- '\r" which defines a carriage return (decimal 13),
- \n" which defines a line feed (decimal 10),
- Any combination of characters and '\r’, \n'.
Note that the line terminator must not be equal to the column delimiter.
firstLine (String)A string to be added to the first line of the file.

To export data into a text file, fist call DataExportOptions for setting the desired file format. Then call
SaveWinow and pass textFileType for the parameter
See also: DatalmportOptions

DatalmportOptions

function DatalmportOptions(optional parameter list);
Sets the options for importing text files. Parameters:
mode (Integer) Specifies the basic format . Pass asFunction (for loading text

files into a text window) , withTitles (for loading text files as data in
standard format with column titles) , withoutTitles (for loading text files
as data in standard format without column titles) , or customFormat (for
loading text files as data in a customized format as given by the following

parameters)
headerLines (Integer) The number of lines to be skipped at the beginning of the file.
copylnfo (Boolean) Copy the header lines (specified with parameter headerLines)
into the info field of the data window.
withTitles (Boolean) Read the column titles.
delimiter (String) Column delimiter, at least 1 character. Typical values are:

- '\t which defines a tabulator (decimal 8)

- " "which is a simple space,

- ', which is a simple comma,

- '\s' stands for “1 or more spaces”,

- '\w' stands for “1 or more spaces and/or tabulators in any
sequence”,

- Any combination of characters and '\t'.

A-20 Appendix A: Predefined functions, procedures and arrays

terminator (String) Line terminator after each row, with at least 1 character. Typical values are:
- '\r" which defines a carriage return (decimal 13) ,
- \n" which defines a line feed (decimal 13) ,
- Any combination of characters and \r', \n'.
Note that the line terminator must not be equal to the column
delimiter.

To import data from a text file, fist call DatalmportOptions for setting the desired file format. Then call
OpenFile and pass textType (for loading the file into a function window) or dataType (for loading the file
into a data window) for the parameter “type”.

DataTransform
procedure DataTransform(optional parameter list)

Performs various data transformations on a data window. Corresponds to the command “Dat:
Transform...” of the “Calc” menu.

Parameters:
window (String or Longint) The name or window ID of the data window.
operation (Integer) The operation to be performed. Use one of the constants:
sumOp, multOp, subOp, divisionOp, powerOp, DIVOp, MODOp,
integrateOp, derivativeOp, formulaOp, functionOp, sqrOp,
sqrtOp, invertOp, absOp, expOp, InOp, tentoOp, logOp,
fill_o, fill_1, fill_N, sinOp, arcsinOp, cosOp, arccosOp,
tanOp, arctanOp, sinOp, arcsinOp, cosOp, arccosOp, tanOp,
arctanOp .
selectionOnly (Boolean) True if operating on current selection, false if operating on x
and y column.
selRowsOnly (Boolean) True if operating on the selected rows only.
xColumn (Longint) The x-column (omit if you pass true for selectionOnly)
yColumn (Longint) The y-column (omit if you pass true for selectionOnly)
function (String) The function to be used if operatiofuigtionOp
formula (String) The formula if operation is set to formula.
argumentColumn (Longint) The column to be used as argument if the operation works on a
column argument.
argumentValue (Real) The value to be used if the operation works on a value argument.

To use this command, you best choose “Start Recording” from the Misc menu, then choose “Dat:
Transform...” from the Calc menu and set the desired options. Hit ok. The correct call is then recorde
in your function window.

DataOK
function DataOK(row,col:longint):Boolean;

Returngrue if the given cell of the current data window contains a numeric value, redisensiif the
cell is empty, if it is part of a text column, or if it lies outside the data window. Use this function before
reading a data cell.
Example:
if DataOK(i,j) then myVariable := data]i,j];
DataOK causes a run-time error if no data window is open.
The external module name for this functiomdstData .

Appendix A: Predefined functions, procedures and arrays A-21

DateString
function DateString(format: integer):String;
Returns a string with today's datemat defines the formatting of the string and can take the following
values:shortDate ('1/31/92'),abbrevDate (‘'Fri, Jan 31, 1992')pngDate ('Friday, January 31,
1992").
See also: TimeString

DeactivateProFitWindows
procedure DeactivateProFitWindows;
External modules only. For advanced programmers only. Deactivates all of pro Fit's windows and

disables all menus. Call this routine before showing a window or creating a dialog. Each call to
DectivateProFitwindows must be matched with a call AetivateProFitwindows

Delete
procedure Delete(s: String; first, length: integer);

Deletedength characters in s, starting from charadter . To delete all characters until the end of the
string, pass 255 faength

Example:
s :='hi there’;
Delete(s, 4, 2);
WriteLn(s); {writes 'hi ere'}

DeleteAxis
procedure DeleteAxis(whichAxis:integer;axislID:integer);
Deletes the given axis. axisID corresponds to the number used in the axis popup menu in the dialog bc
that appears when double clicking an axis, e.g. axisID=2 for axis X2. whichAxis is either xAxis or
yAXis.

DeleteFunction
procedure DeleteFunction(func:String)

Removes the given function from the “Func” menu. func is the name of the function.
See also: DeleteProgram

DeleteParameterSet
procedure DeleteParameterSet(optional parameter list);

Deletes a parameter set previously saved with SaveParameterSet. Does nothing if the parameter set is
found. Parameters:

name (String) The name of the set. Omit to delete all the sets belonging to the
given function.

ofFunction (String) The function the parameter set belongs to. Omit if the parameter
set was available to all functions.

file (String) The file from which the parameter set must be deleted. Omit to
delete from permanent set.

fromMenu (Boolean) True if the param set must be deleted from the parameter set
menu. Default: true)

fromFile (Boolean) True if the param set must be deleted from the file.

Default: true.
See also: AddParameterSet, UseParameterSet, SaveParameterSet, LoadParameterSet

A-22 Appendix A: Predefined functions, procedures and arrays

DeleteProgram
procedure DeleteProgram(prog:String)

Removes the given program, module or script in the “Misc” menu. prog is its name.
See also: DeleteFunction

Derivative
function Derivative(name:Str255; x,scale:extended):extended;

Returns the derivative of a functiorame is the name of the function as it appears in the Func menu.
This parameter is case sensitive. Use an empty string (") for the function that is currently selected in th
Func menux is the x-coordinate where the derivative must be calcukataed. is the length of a typical
interval of x-values over which the function’s value changes.

For the parametescale , a rough estimation is good enougbale is typically something like the
length of the x-axis when you plot your function. It must not be too small. As an example, if your
function describes a 20 ns laser pulse and uses time in seconds as its input, set scale 8.GLGo 10
ns).

Causes a run time error if the function does not exist.

DisableDrawingUpdates
procedure DisableDrawingUpdates;

By default, pro Fit draws a shape immediately after a program created it. If you don’t want shapes to b
drawn immediately, call this routine before you start drawing. This can accelerate the execution of you
program.

There isn't any EnableDrawingUpdates " routine. DisableDrawingUpdates inhibits drawing until

your program has finished.

DoCloseWindow
procedure DoCloseWindow(windowlID:longint; savelt:Boolean);

External module name, se®seWindow

DoMenu
procedure DoMenu(theMenultem:Str255);

Executes a command appearing in pro Fit's menegenultem defines the command to be executed.
To execute a command from a normal (not hierarchical) nt@mignuitem has the format:
'menu naméem name
To execute a command from a hierarchical meieimenultem has the format:
'menu namsubmenu namgem name
Instead of specifying an item name, you can also specify the number of the item in the menu preceded |
H#'
This procedure cannot be called while a function is running.
Examples:
DoMenu('Edit:Copy");
DoMenu('Calc:Nonlinear Fit...");
DoMenu('Calc:Fourier Transform:FFT...$0K?");

DoMenu('Draw:Rotate:#1");
If the command that you select in this way brings up a dialog box and if you want to automatically click
the OK button of this dialog box, adgbk' to the end of the string. Addingok' to the end of the
string has the same effect as immediately clicking OK when the dialog box comes up, but the dialog bo:
will not appear.

Appendix A: Predefined functions, procedures and arrays A-23

DoScript
procedure DoScript(window: integer);

Runs the script in the given window. window is its window ID. Equivalent to selecting “Run” or “Run
Selection” from the menu “Misc”.

DoNewWindow
procedure DoNewWindow(windowType:OSType);

External modules name. SeevWindow.

DrawArc
procedure DrawArc(left,top,right,bottom, start,length:extended);

Creates an arc inside the specified bounds in the current drawing window. It is a part of an ellipse. Th
arc extends from the anglert to the angletart+length

DrawDataPoint
procedure DrawDataPoint(x,y:extended);

Creates a data point at the coordinates x,y in the current drawing window. It uses the point style set b
SetDataPointStyle, SetBGDataPointStyle.

If OpenDataSet has been called before calling DrawDataPoint , then DrawDataPoint creates a new de
point in the current graph instead of drawing in the drawing window. In this case DrawDataPoint adds ¢
point with zero error bars, a call to DrawDataPoint(x,y) is then equivalent to a call to
AddDataPoint(x,y,0,0,0,0);

DrawEllipse
procedure DrawEllipse(left,top,right, bottom:extended);

Creates an ellipse inside the specified bounds in the current drawing window.

DrawlLine
procedure DrawLine(start_h,start_v,end_h, end_v:extended);

Creates a line in the current drawing window extending between the given start and ernabpaoints
start_v, end_h, end_v

DrawNumber
procedure DrawNumber(theNum:extended; decs:integer; theAngle:extended;
docenter:Boolean);

ConvertstheNum to a string and draws it in the current drawing windases defines the number of

digits after the decimal point that must be displayed.

The text appears at the current pen position, set MétleTo. If doCenter is true, the number is
centered on the current pen position and the current pen position remains unchangeahtdf is

false, the text starts at the current pen position and the current pen position is offset to the end of the te:
theAngle defines the rotation of the text and can take the values 0, 90, 180 and 270.

If doCenter s false, the current pen position is offset to the end of the string.

DrawPICT
procedure DrawPICT (left,top,right,bottom: extended;
thePict:PicHandle);

External modules only. Creates a new picture in the current drawing window using the Mac OS
PicHandle thePict .left andtop give left top corner of the picturgght andbottom are used to
define the size of the picture if they are larger than left and top, respectively. Otherwise the size i
derived from the information given ihePict

A-24 Appendix A: Predefined functions, procedures and arrays

DrawRect
procedure DrawRect(left,top,right,bottom: extended);

Creates a new rectangle with the given borders in the current drawing window.

DrawText
procedure DrawText(theString:Str255; theAngle:extended;
docenter:Boolean);

Draws a text in the current drawing window. The text appears at the current pen position, set witt
MoveTo. If doCenter is true, the text is centered on the current pen position and the current pen position
remains unchanged. dbCenter is false, the text starts at the current pen position and the current pen
position is offset to the end of the tetkkAngle defines the rotation of the text and can take the values

0, 90, 180 and 270.

If doCenter is false, the current pen position is offset to the end of the string.

DrawTextLine
procedure DrawTextLine(theString:Str255; theAngle:extended,
docenter:Boolean);

External module name. SeeawText .

Erf
function Erf(x:extended):extended,;
The error function, defined by
erf (x) :% et
)
Erfc

function Erfc(x:extended):extended,

The complementary error functicgtic(x) = 1-erf(x)
(erf anderfc are also available @&€rf andpPErfc for external Pascal modules to avoid ambiguities
when using the unit fp.p, which defin@s anderfc .)

Exit
procedure Exit;

Exits a local function or procedure. If called in main body of a program or function, exits the program or
function. See alsoalt .

Extrema
procedure Extrema(optional parameter list)
Finds the minima/maxima of a function by varying its x-value within a given interval. Parameters:
function (String) The function to be used. Omit for current function.
xMin (Real) The start of the x-interval to be searched for extrema.
xMax (Real) The end of the x-interval to be searched for extrema.
subintervals (Integer) The number of sub-intervals to be searched in the x-interval.

When the function’s derivative changes its sign over a sub-interval, the
sub-interval is searched for a minimum or maximum.

printResults (Boolean) Set to true for printing the results to the Results window. Omit
“printResults” or set it to false for suppressing this.
To retrieve the results of a call to procedexgema , call the functiorGetResult(selector...) . Use

one of the following selectors:

Appendix A: Predefined functions, procedures and arrays A-25

extremaCount : the number of extrema found < (00)
extremaXValue : X-value of each extremal point*
extremaYValue :Yy-value of each extremal point*

extremaSign : specifies if given point is minimum (extremaSign has value —1) or maximum
(value 1) *
* pass an index (1..extremaCount) as second parameter to GetResult

The following example finds the maxima of the current function between —1 and 1, then prints them:

program MaximaFinder;
var i, nrPoints:Longint;
begin
Extrema(xMin -1, xMax 1, sublintervals 50);
nrPoints:= GetResult(extremaCount);
fori:=1 to nrPoints do
if GetResult(extremasSign,i) > 0 then {if max.}
Writeln(GetResult(extremaXValue, i));

end;
Exp
function Exp(x:extended):extended;
The exponential function.
expik) = eX
false
const false =0
This constant stands for the logical value of false.
Fit
procedure Fit(optional parameter list);
Runs a fit. Parameters:
function (String) Function to be fitted. Omit for current function.
algorithm (Integer) Algorithm to be used: levenberg, montecarlo, robust, linear,
polynomial.
window (String or Longint) The data window’s name or window ID. Omit for
fitting the front window.
xColumn,
yColumn (Longint) The columns containing the x- and y-data. Pass -99 for using
the row index as x-column.
XErrKind (Integer) Errors of the x-dataindividualError (if the x-errors are

found in a column, passed in parameter “XErrColumndpstantError
(if the x-errors are constant, passed in paramet&rror ”),
percentError (if the x-errors are in percent, passed in parameter
“xError "), zeroError (if the x-errors are assumed to be zero) .
Omit if x-errors are unknown.

XErrColumn (Longint) The column containing the x-errors i%XEfrKind " is
individualError.

A-26 Appendix A: Predefined functions, procedures and arrays

XError
XErrDistribution

yErrKind

yErrColumn

yError

yErrDistribution
fullDescription
onlyActiveParameters

stopCounter

doErrorAnalysis

confidence

printResults

(Real) The x-error ifXErrkind " IS constantError Of percentError

(Integer) The distribution of the x-errors: gaussianDistribution,
lorentzDistribution, expDistribution, tukeyDistribution,
andrewDistribution.

(Integer) Errors of the y-dat&idividualError (if the y-errors are
found in a column, passed in paramet@&i‘Column "), constantError

(if the y-errors are constant, passed in paramey@rror)
percentError (if the y-errors are in percent, passed in parameter
“yError "), unknownError (if the y-errors are unknown)

Omit if the y-errors are unknown.

(Longint) The column containing the y-errors ifErrkind " is
individualError.

(Real) The y-error if yErrKind " IS constantError O percentError

(Integer) The distribution of the y-errors: gaussianDistribution,
lorentzDistribution, expDistribution, tukeyDistribution,
andrewDistribution.

(Boolean) True if a complete protocol of the fit is to be printed in the
results window, false if a shortened protocol is to be printed.

(Boolean) True if all parameters are to be printed in the results window,
false if only the fitted parameters are to be printed.

(Longint) Defines the number of iterations if algorithm is montecarlo. Set
to O if you want the fit to continue until it is interrupted manually. Omit for
all other fitting algorithms.

(Boolean) True for running a statistical error analysis after the fit (slow) ,
false if errors are to be derived from the covariance matrix (Levenberg-
Marquardt algorithm only) . Default: false

(Real) The desired confidence interval for statistical error analysis. Omit if
doErrorAnalysis is false.

(Boolean) Set to true for printing the results to the Results window. Omit
“printResults” or set it to false for suppressing this.

To retrieve the results of the fit, use the functBatResult(selector...) . Use one of the following
selectors:
chiSquared chi squared

nrFittedParameters
fittedParameter
covariance
confidenceMin,
confidenceMax
standardDeviation
nriterations
goodnessOfFit
nrDataPoints
sumOfDeviations
correlation
probCorrelation

number of fitted parameters
fitted parameters*
elements of the covariance matrix **.

lower and upper limits of the fitted parameters *

standard deviation of fitted parameters

number of used iterations

goodness of fit

number of fitted data points

sum of deviations (only after robust fit)

linear correlation between x- and y-values (only after linear fit)
significance of linear correlation (only after linear fit)

Appendix A: Predefined functions, procedures and arrays A-27

* Pass parameter index (1 based) as second argument to GetResult
** Pass matrix indices (1 based) as second and third arguments to GetResult

Note: The old definition
procedure Fit(funcName:String; xCol, yCol,
errCol:longint; errVal: extended;
selectionOnly:Boolean
is still supported but obsolete — do not use it in new programs.

FittedParams
function FittedParams(i:integer):extended;
Obsolete UseGetResult(fittedParameters, i) instead.

Returns the parameter values obtained in the lastifitthe parameter index.
Causes a run-time erroriifis out of range or if the last fit was not a successful fit.

FFT
procedure FFT(optional parameter list)

Performs a Fourier transform on a data window. Input is a column of real values in the time domain.
output are two columns of real/imaginary or amplitude/phase in the frequency domain. Parameters:

window (String or Longint) Data window, specified by name or window ID.

inputCol (Longint) Input column

outputColl (Longint) Output column for real part or amplitude in the frequency
domain.

outputCol2 (Longint) Output column for imaginary part or phase in the frequency
domain.

outFrequencyCol (Longint) Output column to hold the frequency values (Hertz) of the data

in outputColl and outputCol2. Calulated from parameter “timelnterval”.
Omit if no frequency column is to be calculated.

timelnterval (Real) The time interval (Seconds) between consecutive data points in the
input column. Used for calculcating the frequency column. Omit if no
frequency column is to be calculated.

reallmaginary (Boolean) True if the output columns are to hold the real and imaginary
values in the time domain, false if they are to hold their amplitude and
phase.

printResults (Boolean) True if statistical information on the processed data is to be

printed in the Results window.
See also: InverseFFT.

FrontmostWindow
function FrontmostWindow(windowType:OSType)longint;

Returns the ID of the front most window of the given type, returns 0 if no window of the given type
exists.windowType can either béataType , textType oOrdrawingType for specifying data windows,
function windows and drawing windows, respectively.

FrontWindow
function FrontWindow:longint;

Returns the window ID of the front window. The ID will be valid as long as the window exists. For
more information about window IDs, see the section “Windows and Documents” above.

A-28 Appendix A: Predefined functions, procedures and arrays

Gamma
function Gamma(x: real/complex):real/complex;

Gamma function. x must be larger than 0 for real valued results. Real value accuracy > 12 digits.

Gammal
function Gammal(a, x: real/complex):real/complex;

Incomplete gamma function. x and a must be larger than O if they are both real-valued. Real valu
accuracy approximately 8 digits. Complex value accuracy up to 12 digits.

Gammaln
function GammalLn(x: real/complex):real/complex;

Natural logarithm of the gamma function. Real value accuracy > 12 digits.

GammaP
function GammaP(a,x: real/complex):real/complex;

Incomplete gamma function “P”.

GammaP(a,x) = 1 - Gammal(a,x)/Gamma(a)
x and a must be larger than 0 when they are both real-valued. Real value accuracy approximately
digits. Complex value accuracy up to 12 digits.

GetAndSetStatus
function GetAndSetStatus(newStatus:integer; var s:Str255):integer;

External modules only. For advanced programming. Returns the present execution status, then sets it
newStatus . The status can be O(if normal operation), 1 (if the user interrupted operation), 2 (if a
warning has been posted), 3 (if a run-time error has been posted).

SetnewsStatus to-1 if you don't want to change the current status. If you set a status 2 or 3, pass a
suitable error or warning messagesjnit will be shown once your module is finished. On retsrn,
holds the current message (if status was 2 or 3).

Note: CallingStopExecution is equivalent to setting error status to 1 alStop returns true if error
status is 1 or 3.

GetBasics
procedure GetBasics(var count:longint
var sum,mean,variance,stdDev,meanAbsDev.extended);
ObsoleteUse Statistics and GetResult instead.
Returns some of the results obtained in the last statistics evaluation performed with the routine

CalcStat . CalcStat must have been called with thi#hBasics parameter set to trueGietBasics IS
to be useed be used.

GetCell
procedure GetCell(var s:String;row,column:longint);

Returns the string in the given cell of the current data window. If the cell is in a number column, it
converts the number to a string and returns the string.

GetClickedCoord
procedure GetClickedCoord(var x,y:extended);

Returns the window-coordinates where the last mouse click took place in the current drawing window.

Appendix A: Predefined functions, procedures and arrays A-29

GetColHandle
procedure GetColHandle(col:longint; var colH:Handle;
var length:longint; var colType:longint;
forWriting:Boolean);

External modules only. For advanced programming.

This routine returns a Mac OS handle to the data of the given column. You can read and/or modify th
data in the handle. This is much faster than accessing a column's data GumagdiSetData and
GetCell/SetCell

colH can benil if the corresponding column is emptyngth is the number of rows held by this
column, presently always equali@ows . forwriting ~ must be set to true if you intend to change the
contents of the column, set to false otherwise. If you change the data in the returned handle, you mu
subsequently calbetColHandle . colType is the type of the columnektColumn, floatColumn,

doubleColumn)

Do not callbisposeHandle(colH) —colH is allocated and deallocated by pro Fit.

The organization of the datadaiH depends on the data type of the column as returnedTipye :

if colType = floatColumn , colH is a handle of typ€&loatColumnHandle (handle to an array of 4-

byte floating point values), iéolType = doubleColumn , colH is of typeDoubleColumnHandle

(handle to an array of 8-byte floating point valueskoifrype = textColumn , colH is of type
TextColumnHandle (handle to a record of ty[®ringData).

Note: For columns of typ@atColumn anddoubleColumn , the first entry of the array is reserved. The
value of the first cell is found in the array element having index 1.

Warning 1: This routine should by used by experienced programmers only.

Warning 2: Accessing text columns in this wands recommended. The definition of the data structure
may change in the future.

While you are working on the datadnliH , you should not call any other routines accessing the data
window exceptGetColumnHandle andSetColumnHandle . When you modify the data wwlH , you
should avoid calling any pro Fit routines until you have cafledolHandle — if you want to call
other pro Fit routines, first make a copy of the data by usimgToHand; once you have made all
modifications to the data, calktColHandle

GetColName
procedure GetColName(var name:Str255; col:longint);

Returns the title of the colunenl .

GetColType
function GetColType(columnNumber:longint)longint;

Returns the type of the data of the given column (in the current data window).

Return values arextColumn (for text columns)floatColumn (for numeric columns having a range
of -1e30 ... 1e30, i.e. 4-byte floating point valuesji@mleColumn (for numeric columns having a
range of -1e300 ... 1e300, i.e. 8-byte floating point values).

GetCurrentAxis
function GetCurrentAxis(whichAxis:integer)integer;

returns the ID number of the current x- or y-axigichAxis is eitherxAxis oryAxis .

GetCurrentGraph
function GetCurrentGraph:longint;

Returns a unique number identifying the current graph as long as it exists. Returns O if no current grag
exists.

A-30 Appendix A: Predefined functions, procedures and arrays

GetCurrentWindow
function GetCurrentWindow(windowType:longint):longint;

Returns the ID of the current window with typéndowType . windowType can bedataType ,
drawingType OrtextType specifying data windows, drawing windows and function windows.

GetData
function GetData(row,column:longint)extended,;

External modules only. Returns the numerical value of the given cell in the current drawing window.
GetData replaces the predefined matdixtali,j] used from functions within piit.

GetDefaultData
procedure GetDefaultData(xColH,yColH, xErrColH,
yErrColH:ExtendedArrayHandlePtr;
indecesH:LongArrayHandlePtr; var arraySize:longint;
selectedRowsOnly:Boolean; info:DatalnfoPtr);

type
Datalnfo = record

xMin,xMax,xPosMin,xNegMax: extended;
yMin,yMax,yPosMin,yNegMax: extended,;
ordered: Boolean;
zeroYErrors,invalidYErrors,
zeroXErrors,invalidXErrors: Boolean;

end;

DatalnfoPtr = "Datalnfo;

This routine provides a copy of the default x-y data in the current data window. It allocates memory for
the x,y arrays, for the x,y-Error arrays, and for the array that gives the corresponding row numbers ii
the data window. Then it fills them with the data. It copies only the data where both the x and the y cel
contain valid numbers. The arrays are returnedaH”, yColH”, xErrColH”, yErrColHA. Pass

nil for one of these arrays if you are not interested in it.

The recordnfo holds some more information about the returned data.

The arrays returned liyetDefaultData contain valid data starting from the element with index 1. The
value of the element with index 0 is undefined. The last element hasaina@eize . arraySize IS set

to zero in case of out-of-memory situations or other problems.

Warning: This routine should only be used by advanced programmers.

GetFileDirectory
function GetFileDirectory(ID:longint; s:string):boolean;
Returns the directory where the document displayed in the given window is stored.

ID is the windowlID. The path-name of the directory is returned in the string s. This function returns
false if the path-name had to be truncated.

GetFrontWindow
function GetFrontWindow:longint;

External module name. SE@ntWindow .

GetFunctionName
function GetFunctionName:Str255;

Returns the name of the current function.

Appendix A: Predefined functions, procedures and arrays A-31

GetFunctionParam
function GetFunctionParam(name:Str255;i:integer):extended,

Returns the default value of a parametame is the name of the function. This parameter is case-
sensitive. Use an empty string (") to specify the function currently selected in the Func¢ nsethe.
parameter index.

Example:

GetFunctionParam(‘Polynom’, 1) returns the degree of the built-in function “Polynom”.

GetFunctionParamMode
function GetFunctionParamMode(name:Str255; i:integer):integer;

Returns the fitting modea¢tive , inactive , constant) of a parametemame is the name of the
function. This parameter is case-sensitive. Use an empty string (") to specify the function currently
selected in the Func menuis the parameter index.

GetFunctionParamName
function GetFunctionParamName(name:Str255; i:integer):integer;

Returns the name of a parameterme is the name of the function the parameter belongs to. This
parameter is case-sensitive. Use an empty string (") to specify the function currently selected in the Fur
menu.i is the parameter index.

GetGlobalData
function GetGlobalData(index:integer):real,

Returns the value stored under the given index in a global data array. This data array is shared betwe
all functions and programs. It can be used for communication between programs, functions, scripts an
modules.

The index must between 0 and 99.

See also: GetGlobalData

GetGraphCoordinates
procedure GetGraphCoordinates(var xmin,xmax,ymin,ymax:extended);

Returns the minimum and maximum values of the main »
and y-coordinate axes of the current grapkmiin, xmax,
ymin, ymax . |

1.0 T

If the current graph looks like the one to the right 0-0 -
GetGraphCoordinates returnsxmin =0, xmax=6, ymin =—

1, ymax= 1. /
-1.0 -
0.0 6.0
GetGraphFrame
procedure GetGraphFrame(var left,top,right,bottom:extended);
Returns the enclosing rectangle of the current graph.
GetMarkedCoord

procedure GetMarkedCoord(i:integer;var x,y:extended);

Returns the coordinates of the preview window marker with index, y . Pass i=0 for the reference
marker.

A-32 Appendix A: Predefined functions, procedures and arrays

GetMedian
procedure GetMedian(var count:longint; var
mean,median,minimum,maximum:extended);
ObsoleteUse Statistics and GetResult instead.

Returns some results of the last caltsxStat . CalcStat must have been called with thighMedian
parameter set to true before this function can be used.

GetModuleFile
function GetModuleFile:FSSpecPtr;

External modules only. Returns a pointer torBspec record of the file where the currently running
external module was found. Returils if no such file exists.

GetNextGraph
function GetNextGraph(graphID:longint)longint;

Returns the graph following the one with the given ID, returns the first grgpipifD=0 . Returng if
graphiD points to the last graph. Retumg no graph exists with the given ID.

Called repeatedlyGetNextGraph cycles through all graphs and returns their ID. Start with
GetNextGraph(0) to make sure that all graphs are scanned.

GetNumFunctionParams
function GetNumFunctionParams(name:Str255):integer;

Returns the number of parameters used by a functiere.is the name of the function. This parameter
Is case sensitive. Use an empty string (") to specify the function currently selected in the Func menu.

GetResult
function GetResult(selector, [index1,[index2]]);

This function returns the results of various commands. The desired result is selected by the
resultSelector. If the result is an array or matrix, you have to add one or two indices index1, index2. I
the result is a simple number, omit the indices

These are the commands that GetResult returns resultgitforoptimize , Statistics , Root ,

Extrema , Integral

See the definitions of the respective commands for the selectors to be passrektd

GetSelection
function GetSelection:Rect;
External modules only. Returns the coordinates of the contiguous selection in the current drawing

window. The rectangle's coordinates correspondsdtectLeft , SelectTop , SelectRight
SelectBottom

GetSelectionBounds
function GetSelectionBounds(var left, right, top, bottom: extended);

Returns the boundaries of the current selection in the current drawing window.

GetSkew
procedure GetSkew(var count:longint; var
mean,variance,skewness,kurtosis:extended);
ObsoleteUse Statistics and GetResult instead.

Returns some results of the last calldaicStat . CalcStat must have been called with the
withSkewAndCurt ~ parameter set to true before this function can be used.

Appendix A: Predefined functions, procedures and arrays A-33

GetWindowlID
function GetWindowID(windowName:Str255)longint;

Returns the window ID of the window having the given title. Returns O if there is no window with this
title.

GetWindowTitle
procedure GetWindowTitle(windowlID:longint; var name:Str255);

Returns the title of the given windowindowID is the window ID of the window, such as it is e.g.
returned byGetwindowID Or FrontWindow .

GetWindowType
function GetWindowType(windowlID:longint)longint;
Returns the typedétaType for data windowstextType for function windowsgdrawingType for

drawing windows) of the given window. Retuimg the given window is of any other type.
windowID is the window ID of the window, such as it is returnedsbywindowID Or FrontWindow .

globalData
globalData: array[0..100] of extended

Obsolete Not supported in version 5.1 or later. Use GetGlobalData and SetGlobalData instead.

GrLine
procedure GrLine(x,y:extended);
External modules name. Seage .
GrLineTo
procedure GrLineTo(x,y:extended);
External modules name. SeeeTo .
GrMove
procedure GrMove(x,y:extended);
External modules name. Sieve.
GrMoveTo
procedure GrMoveTo(x,y.extended);
External modules name. SkeveTo.
GroupBegin

procedure GroupBegin;

Starts the definition of a group. All drawing taking place after this call will be part of a group.
Call Groupend when you have finished drawing the parts of the group.

GroupEnd
procedure GroupEnd,;

Ends the definition of a group. SeeupBegin .

Halt
procedure Halt;

Exits the running a program or function. See aza: .

A-34 Appendix A: Predefined functions, procedures and arrays

HandleEvent
procedure HandleEvent(var theEvent: EventRecord);

External Modules only. For advanced programming. Passegent to pro Fit for handling it. Use
this call to handle update events when creating your own winde®vent is a pointer to the Mac OS
event record.

const ii = compl(0,1);
The imaginary unit.

Im
function Im(z: complex)extended,;
Returns the imaginary part of the complex nunabéio get the real part, call functice.
inf
const inf = 1/0;
An infinitely large number. Usénf for an infinitely large negative number.
Input

procedure Input(s1:Str255; var v1; s2:Str255; var v2; ...);

Brings up a dialog box where you can enter new values for v1jng2t.. can set up to 6 variables of

type Real or String. Each variable can be preceded by a string defining a title to be shown for the
variable. If you omit this string, the variable’s name is used. The title of the dialog box can be set using
theSetBoxTitle . Example:

program test;
var

a:extended;
i;integer;
begin
a:=0.5; i:=10;

SetBoxTitle('starting parameters');
Input('value of a',a,'value of i',i);
end;
This program first assigns default values to the variabbesdi . Then it asks the user to change these
variables if she wants to. The program displays the following dialog box:

starting parameters

value of a 0.5

value of i 10

The title was set using the routigetBoxTitle . The user can enter new values for the variables. If she
clicks ‘OK’, the program continues, if she clicks ‘Stop’, the program is interrupted immediately.

Appendix A: Predefined functions, procedures and arrays A-35

Input checks if the title for a parameter starts with followed by one or more special characters. Use
this option if the corresponding variable is to be entered by means of a pop-up menu or a check box.

the title starts with:
"SW..."

'$C..."

'SPXXXXS...":

'$X..."

Example:

a pop-up menu with a list of all data windows is used. Initialize the
variable for the window to O or the reference ID of a data window before
passing it to Input. On return, it contains the reference ID of the selected
window.

a pop-up menu with a list of a columns in a data window is used. If there
is a popup menu with data windows in the same dialog box, then the
columns of the selected data window are shown, otherwise the columns
of the current data window are shown.

a pop-up menu with user defined items is used. The items are defined by
stringxxxx (terminated bys'). xxxx recognizes the metachars defined
for the Mac OS routin@ppendMenu, €.g. use semicolons to separate the
items inxxxx .

a check box is used. It is unchecked if the variable is 0, checked
otherwise. The returned value will be 0 (unchecked) or 1 (checked).

Input('$Wwindow',w,'$Cdata column’, col, '$Pyes;no;-;maybe$do it?', fuzzy);
brings up the following dialog box:

window | Data 122 % |
data column | ® Time [s] % |
yes

Limitations:

You can only specify one data window pop-up.
If you have a data window pop-up as well as one or more column pop-up menus, the data window pog;
up must appedreforethe column pop-up.

InputBox

function InputBox(nrArgs:integer;var r:InputRec):Boolean;

External Modules Only. Replaces the routinput . The parameterirArgs gives the number of
elements of the record The record has the typ@éputRec

A-36 Appendix A: Predefined functions, procedures and arrays

type
ExtendedPtr = "extended,;
InputRec=
packed array[1..maxNrIinputValues] of record
x: ExtendedPtr;
S: str255;
end;
Strings and values are set according to the explanations given for the nguitineln addition to the
'$.." meta-commands recognized lagut , InputBox also understands the meta command '$S...
which specifies that the parameter is a string pointer.
The following is an abbreviated example showing how toigaliBox in Pascal:

var
d1: extended;
sl1, s2: Str255;
r: InputRec;
Str255: s;
begin
dl:=1.1; { default values }
s :='default text';
sl:='datal; {andnames}
s2 :='$Sdata2’;
rMi].x .= @d1; {setentriesofr}
r[2].x := ExtendedPtr(@s);
r[1].s := @s1;
r2].s := @s2;
if InputBox(2, r) then ...

(If you are programming in Gais Pascal’'s address operator (corresponding itoC). For C, the
indices of thenputRec range from 0 to 5.)

Integral
function Integral(name:Str255; min,max:extended;

iterations:integer):extended;

ObsoleteUselntegrate instead.

Returns the integral of a functiarame is the name of the function as it appears in the Func menu. This
parameter is case-sensitive. Use an empty string (") to specify the function currently selected in the Fur
menu.min andmax are the lower and upper limits of the integiarations is the number of
iterations for calculating the integral (must be in the range 5..15). A small number of iterations makes
execution faster but decreases accuracy — a large value slows down execution but yields a more accur
result.

Integrate
procedure Integrate(optional parameter list)
Calculates the integral of a function over a given x-range. Parameters:
function (String) The function to be used. Omit for current function.
xMin (Real) The start of the x-range.
xMax (Real) The end of the x-range.

Appendix A: Predefined functions, procedures and arrays A-37

iterations (Integer) The number of iterations (5 .. 15) . The more iterations you use,
the more accurate the result becomes.
printResults (Boolean) Set to true for printing the results to the Results window. Omit
“printResults” or set it to false for suppressing this.
To retrieve the results, use the funciiResult(selector) with one of the following selectors:
integralValue : the integral
integralAccuracy : the correction in the last iteration

The following piece of code calculates the integral of the current function between -1 and 1, then prints
it:

Integrate(xMin -1, xMax 1, iterations 10);
Writeln(GetResult(integralValue));

See also: Tabulatelntegral

Invalid
function Invalid(val:extended):Boolean;

Returns true if val is an invalid numberNaN Not A Number). Use this function to test the results of
Root , Maximum andMinimum, or of other functions that can return a NAN in some cases.

InverseFFT
procedure InverseFFT(optional parameter list)

Performs an inverse Fourier transform on a data window. Input are two columns of of real/imaginary ot
amplitude/phase in the frequency domain. Output is a column of real values in the time domain.
Parameters:

window (String or Longint) Data window, specified by name or window ID.

inputColl (Longint) Input column for real part or amplitude in the frequency
domain.

inputCol2 (Longint) Input column for imaginary part or phase in the frequency
domain.

outputCol (Longint) Output column

outTimeCol (Longint) Output column to hold the time values (Seconds) of the data in

outputCol. Calulated from para—meter “frequencylinterval”. Omit if no
time column is to be calculated.

frequencylinterval (Real) The frequency interval (in Hertz) between consecutive data points
in the input columns. Used for calculcating the time column. Omit if no
time column is to be calculated.

reallmaginary (Boolean) True if the input columns hold the real and imaginary values in
the time domain, false if they hold their amplitude and phase.
printResults (Boolean) True if statistical information on the processed data is to be
printed in the Results window.
See also: FFT.
invalidNum
const invalidNum = “not a number”

An invalid number, a NAN.

A-38 Appendix A: Predefined functions, procedures and arrays

KeyPressed
function KeyPressed(key:integer):Boolean;

Returns true if the given key of the keyboard is currently held daesn.can beoptionkey ,
commandKey, shiftkey , controlKey

Length
function Ord(s: String)integer;

Returns the length of the given string s.

Line
procedure Line(dx,dy:extended);

Draws a line from the current pen position x, y to the posiiaix , y+dy . Offsets the current pen
position bydx, dy.

LineTo
procedure LineTo(x,y.extended);

LineTo draws a line from the current pen positiom,yo. Sets the current pen positionip .

Ln
function Ln(x:extended):extended,;

Returns the natural logarithm (badeof x. Causes a run-time error foe 0 . ReturnsINF for x=0.

LoadParameterSet
procedure LoadParameterSet(optional parameter list);

Loads a given parameter set previously saved with SaveParameterSet. The loaded parameters appea
the Parameter window. Parameters:

name (String) The name of the set.

ofFunction (String) The function the parameter set belongs to. Omit if the parameter
set was available to all functions.

file (String) The file from where the parameter set must be loaded. Omit to

load from permanent sets.
See alsoAddParameterSet , UseParameterSet , SaveParameterSet , DeleteParameterSet

Log
function Log(x:extended):extended,;

Returns the base 10 logarithmxofCauses a run-time error for 0 . ReturnsINF for x=0.

LowerString
procedure LowerString(var s: String);

Converts all characters of s to lower case. SeeJalsoString

MakeNewAXxis

procedure MakeNewAXxis(whichAxis:integer; min,max:extended;

scaling:integer; position: extended);
Creates a new xvfichAxis = xAxis) or y (whichAxis = yAxis) axis in the current graph.
The newly created axis becomes the current axis.ddsgurrentAxis to find the ID of the newly
created axis.
position gives the coordinate of the new axis in the coordinate system of the main axes X1, Y1.
scaling can take the values O (linear scaling), 1 (logarithmic scaling), 2 (1/x-scaling), 3 (probability
scaling).

Appendix A: Predefined functions, procedures and arrays A-39

MakeTicks
procedure MakeTicks(whichAxis:integer; firstMaj,distance:extended,;
nrMinTicks:integer);
Creates a new set of ticks for the given axis.
whichAxis ISxAxis OryAxis .firstMaj anddistance give the position of the first major tick and the
distance between major tickeMinTicks defines the number of minors ticks between consecutive
major ticks.

MarkedX
function MarkedX(i: integer):extended,;

MarkedY
function MarkedY (i: integer).extended;

Return the x-coordinate and y-coordinate of the preview window marker withiinéass =0 for the
reference marker. ReturnlaNif no marker with index exists.

Maximize
function Maximize(theFunction:Str255; precision:extended;
varyX:Boolean; var x,y:extended):Boolean;

ObsoletelUse Optimize instead.

Finds the parameter set that that gives a maximum value for the given function.

theFunction is the name of the function as it appears in the Func menu. This parameter is case
sensitive. Use an empty string | to specify the currently selected functi@recision defines the
accuracy of the calculationmaximize will run repeated iterations until the function value changes by
less tharprecision in consecutive iterations. taryX is true,Maximize varies the active parameters as
well as the x-value of the function, if false, only the active parameters are varied and the x-value is no
changed.

The variables andy return the x- and y-values where the maximum is found.

The algorithm used is the Simplex method.

Maximum
function Maximum(name:Str255; min,max:extended):extended,;

ObsoleteUse Extrema instead.

Returns the maximum of a functioire. the x-value where the function's value is largeste is the

name of the function as it appears in the Func menu. This parameter is case-sensitive. Use an emy
string ¢) to specify the currently selected functiofin andmax are the boundaries of the interval
where the maximum must be found.

Maximum starts looking for a maximum only if the slope of the function is positive at x=min and negative
at x=max.

If no maximum is found, the function returmaN (Not A Number). Use the functianvalid to test if

the result is anAN

Minimize
function Minimize(theFunction:Str255; precision:extended;
varyX:Boolean; var x,y:extended):Boolean;

ObsoleteUse Optimize instead.

Finds the parameter set that gives a minimum value for the given function.

theFunction is the name of the function as it appears in the Func menu. This parameter is case
sensitive. Use an empty string | to specify the currently selected function in the Func menu. precision
defines accuracy of the calculationvinimize will run repeated iterations until the function's value
changes by less tharecision in consecutive iterations. VaryX is true,Minimize varies the active

A-40 Appendix A: Predefined functions, procedures and arrays

parameters as well as the x-value of the function, if false, only the active parameters are varied and the
value is not changed.

The variables andy return the x- and y-values where the maximum is found.

The algorithm used is the Simplex method.

Minimum
function Minimum(name:Str255; min,max:extended):extended,;
ObsoleteUse Extrema instead.
Returns the minimum of a function, that is the x-value where the function value is the smalies.
the name of the function as it appears in the Func menu. This parameter is case-sensitive. Use an em
string (") to specify the currently selected functions the parameter inderxin andmax are the
boundaries of the interval where the minimum must be found.
This function starts looking for a minimum only if the slope of the function is negativemat »end
positive at Xmax.
If no minimum is found the function returngnN (Not A Number). Use the functianvalid to test if
the result is anAN

Move
procedure Move(dx,dy:extended);

Offsets the current pen position from its current positiooxyly .

MoveTo
procedure MoveTo(x,y:extended);

Moves the current pen positiondg without drawing anything.

NewDataWindow

procedure NewDataWindow(optional parameter list);
Opens a new data window. Parameters:
nrRows (Longint) The number of rows. Omit for default (200)
nrCols (Longint) The number of columns. Omit for default (10)
name (String) The name of the new window. Omit for using a default name.
boundsLeft,
boundsTop,
boundsBottom,
boundsRight (Integer) The bounds of the window in global screen coordinates, omit for
default position and size.
info (String) The info text attributed to the window. Omit for leaving it empty.
fontName (String) The font to be used for the new window.
fontSize (Integer) The font size to be used for the new window.
NewDrawingWindow
procedure NewDrawingWindow(optional parameter list)
Opens a new drawing window. Parameters:
name (String) The name of the new window. Omit for using a default name.
boundsLeft,
boundsTop,
boundsBottom,
boundsRight (Integer) The bounds of the window in global screen coordinates, omit for

default position and size.

Appendix A: Predefined functions, procedures and arrays A-41

info (String) The info text attributed to the window. Omit for leaving it empty.

fontName (String) The font to be used for the new window.
fontStyle (Integer) The font style to be used for the new window (bold, italic, ...)
fontSize (Integer) The font size to be used for the new window.
NewFunctionWindow
procedure NewFunctionWindow(optional parameter list)i
Opens a new text window. Parameters:
name (String) The name of the new window. Omit for using a default name.
boundsLeft,
boundsTop,
boundsBottom,
boundsRight (Integer) The bounds of the window in global screen coordinates, omit for
default position and size.
info (String) The info text attributed to the window. Omit for leaving it empty.
fontName (String) The font to be used for the new window.
fontStyle (Integer) The font style to be used for the new window (bold, italic, ...)
fontSize (Integer) The font size to be used for the new window.

NewWindow
procedure NewWindow(windowType:longint);

Obsolete Use NewDataWindow, NewDrawingWindow or NewFunctionWindow instead.

Creates a new window of the given typ@ndowType isdrawingType (for drawing windows),
dataType (for data window) otextType (for function windows). The new window becomes the
“current window” of its type.

This procedure cannot be called while a function is running.

NextWindow
function NextWindow(windowID:longint)longint;
Returns the window (i.e. the window ID) of the window behind the window having the given
windowID . If windowID is O, it returns the frontmost window. Returns 0 if no window behind the given

window.
The following example tiles all data, text and drawing windows. It first cycles through the windows to

count them. Then it moves them.

A-42 Appendix A: Predefined functions, procedures and arrays

program TileWindows;
const hTile = 5; {horizontal tiling offset}
vTile = 18; {vertical tiling offset}
var windID: longint;
nrwindows:integer;
left, top: integer;
begin
nrwindows := 0;
windID := FrontWindow;
while windID <> 0 do {count the windows}

begin
if windID > 0 then {if a data, drawing}
nrwindows := nrwWindows+1; {or text}
windID := NextWindow(windID);
end,;

left := nrWindows*hTile;
top := nrWindows*vTile;
windID := FrontWindow;
while windID <> 0do {place the windows}

begin
if windID > 0 then {if a data, drawing}
begin {or text}

PlaceWindow(windID, 3+left, 30+top, 0, 0);
top := top-vTile; left := left-hTile;
end;
windID := NextWindow(windID);
end,;
end;

NrCols
function NrCols:longint;

Returns the number of columns (numeric and text columns) of the current data window. Causes a rur
time error if no data window is open.

NrRows
function NrRows:longint;

Returns the number of rows of the current data window. Causes a run-time error if no data window i
open.

Numberinvalid
function Numberlnvalid(val:extended):Boolean;

External modules name. See Invalid.

NumberToStr255
procedure NumberToStr255(x:extended; var s:Str255;

format,digits:integer);
External modules only. Converts the number x into a stfangat /digits control the conversion
process:
format = O: normal conversion

Appendix A: Predefined functions, procedures and arrays A-43

if digits >0: the number of digits after the "' diigits <O: the total
number of digits (approx.)

format = 1: optimized conversion, removes
unnecessary trailing zeros after the decimal point, unnecessary ‘+’ signs,
decimals points, etc.

digits the number of digits

NumberToString
procedure NumberToString(x: real; var s: String; minimize: Boolean;
digits: integer);
Convert to a string and returns it i If digits is positive or 0, it specifies the number of digits after

the decimal point, otherwise the total number of digits of the resulting stringnitfize is true,
trailing zeroes and any trailing decimal point are/is removed.

NumFitParams
function NumFitParams:integer

Returns the number of parameters of the last fitted function. This is the total number of parameters
including constant and inactive parameters.

Returns 0 if the last fit was not successful. Use this function to check the validity of the last fit before
using such functions a@varMatrix ~ Or ParamSD.

OpenCurve
procedure OpenCurve(curveName:Str255);

Opens a new curve in the current graph. After having cabedCurve , calls toMoveTo, LineTo , Move,

Line will add segmets to the curweirveName is the name of the curve in the legend. CaleCurve

when you have completed the curve.

DrawDataPoint IS not affected by this procedure. It will continue drawing point shapes. Don't use
AddDataPoint betweerbpenCurve andcCloseCurve .

Note that the parameters to be passeddeTo, LineTo , Move, Line are in the coordinates of the
current x- and y-axes. (UsetCurrentAxis to set these axes before callmygenCurve .)

OpenCurve causes a run-time error if no current graph is available.

OpenData
procedure OpenData(fileName:Str255);

Opens the given file as a data file. The file must either be Rifiata file or a text file with valid data.
The new window becomes the “current data window”.

If fileName contains a simple file name, the file is loaded from pro Fit's fold&ieNdme contains a
file path, the file is loaded from the folder defined in the file pathfiSeame to'?* to bring up a
dialog box prompting the user for the name. A run-time error occurs if the file cannot be opened.
This procedure cannot be called while a function is running.

If you want to open a text file with custom format, 8s@extFileFormat to set the format.

OpenDataSet
procedure OpenDataSet(errors:integer; connected:Boolean; name:Str255);
Opens a new data set in the current graph. Once you have@adlezhtaSet , call AddDataPoint Or

DrawDataPoint t0o add data points. Once you have added all data pointsjosathataSet
Parameters:

A-44 Appendix A: Predefined functions, procedures and arrays

errors This parameter is 0O (if the data points should not have error bars) or a sum of the
constants eBarX (symmetric error bars in X), eBarY (symmetric error bars in y),
asymEBarX (asymmetric error bars in X), asymEBarY (asymmetric error bars in Y)

connected Set this to true if the data points should be connected.
name The name associated with the curve. It appears in the legend of the graph

By passing the appropriate valuesirors |, you tell praFit if it should allocate space for holding error
values or not. If you want to use error bars, you have to call the routimataPoint to add data
points and their error bar lengths in the currently open data set. If you are not interested in error bar:
simply callDrawDataPoint . AddDataPoint ignores itErr parameter itrrors iSnoErrorBars Or
errorBarsY . It ignores thgErr parameter ierrors IS noErrorBars Of errorBarsX
OpenDataSet causes a run-time error if no current graph is available.
Example: The following program draws a graph with all types of data points.
program test;
var ij;
begin
CreateNewGraph(0,18,0,3,0,0);
fori:=1to 17 do
begin
SetDataPointStyle(i,9,0.5);
OpenDataSet(0,false,'name);
DrawDataPoint(i,1);
DrawDataPoint(i,2);

CloseDataSet;
end;
end;
OpenkFile

procedure OpenFile(optional parameter list)
Opens a file. Parameters:

file (String) The file to open. Use a simple name or a file path.

type (Integer) The type of the window to be openedt{ype , dataType).

Omit for default type.
UseFrontwindow if you need the window ID of the new window.
To import data from text files, cabatalmportOptions before callingopenFile .
See also GetFileDirectory, SetDefaultDirectory, SaveWindow.
There is also an obsolete definition of OpenFile, supported for compatibility with earlier versions of pro
Fit:

procedure OpenFile(fileName:Str255);

Opens a data, drawing or function file in a new window. The new opened window becomes the “curren
window”. If the given file is a text file, the user will be asked if the file should be loaded into a data or a
function window. To automatically load a text file into a data window QpeeData , to automatically

open a text file into a function window, usgenText .

Appendix A: Predefined functions, procedures and arrays A-45

If fleName contains a simple file name, the file is loaded from thé-primlder. If fleName contains

a file path, the file is loaded from the folder defined in the file path. If you'pastr fileName , the

user will be asked to locate the file.

If the specified file is a pro Fit module or a compiled AppleScript, it is added to the Misc or Func menu.
Causes a run-time error if the file could not be opened

This procedure cannot be called while a function is running.

OpenPoly
procedure OpenPoly(smoothing:integer; closed:Boolean);

Starts the creation of a polygon. After having catb@dnPoly , use multiple calls taine orLineTo to
draw it, then caltlosePoly when you are through. Seésed totrue if the polygon should be closed
at the end.

smoothing = 0 of no smoothingsmoothing = 1 for normal smoothingsmoothing = 2 for Bézier
smoothing with the curve going through the polygon definition points.

OpenText
procedure OpenText(fleName:Str255);

Opens the given file as a function file. The file must either be a pro Fit function file or a text file. The
new window becomes the “current text window”.

If leName contains a simple file name, the file is loaded from thé-primlder. IffleName contains

a file path, the file is loaded from the folder defined in the file path. If you'pasor fileName , the

user will be asked to locate the file.

This procedure cannot be called while a function is running.

Optimize
procedure Optimize(optional parameter list)
Finds a maximum or minimum of a function by varying its x-value and/or its parameters. Parameters:
function (String) The function to be used. Omit for current function.
getMinimum (Boolean) true if you want to find the function’s minimum, false for its
maximum.
varyParams (Boolean) true if you want to vary the function’s parameters to find the
minimum/maximum. Only the active parameters of the function are varied.
varyX (Boolean) true if you want to vary the function’s x-value to find the
minimum/maximum.
xValue (Real) If “varyX” is false, this parameter gives the value of the function’s
x-value. If “varyX” is true, it gives the starting value for x.
precision (Real) The desired precision. Pass 0 for best precision, 1le-7 for medium
precision, 1e-2 for low precision.
fullDescription (Boolean) true if a complete protocol is to be printed in the results
window, false if only the resulting parameters, x- and y-values are to be
printed.
printResults (Boolean) Set to true for printing the results to the Results window.

Default: false.
To retrieve the results of a call to procedorgimize , call the functionGetResult(selector...)
Use one of the following selectors:

optimizedX the optimized x-value
optimizedY the optimized x-value
fittedParameter the optimized parameters. Pass parameter index bag&d) as second

argument to GetResult

A-46 Appendix A: Predefined functions, procedures and arrays

The following example finds the minimum of the current function by varying its x-value and its active
parameters, then prints the optimized value of the second parameter:
Optimize(xValue 0, precision 0, getMinimum true, varyParams true,
varyX true);
Writeln(GetResult(fittedParameter, 2));

Ord

function Ord(ch: char):integer;
Returns the (extended) ASCII code of character ch.

PageSetup
procedure PageSetup(optional parameter list);
Shows the Page Setup dialog box for a given window. Parameters:

window (Longint or String) The name or window ID of the window.
Default: Front window
See also: Print
ParamSD

function ParamSD(i:integer):extended

Returns the standard deviation calculated for parametethe last Levenberg-Marquardt fit.

Returns an invalid number (NAN) if the indexcorresponds to a parameter that was not active during
the last fit. You can test if the return value is a NAN using the funeiraii

Causes a run-time error if the last fit was not successfulioisibut or range. UsgumFitParams to
check if the last fit was successful.

Paste
procedure Paste;

Equivalent to selecting “Paste” from the “Edit” menu.

Phase
function Phase(z: complex)extended;

Returns the argument of the complex number z, i.e. the angle between the vector pointing to the comple
point and the positive real axis. The function Abs gives the amplitude of the number.
abs(c)*exp(ii*phase(c)) = ¢

pi, T
const pi = 3.1415926535897932;
Tt = 3.1415926535897932;

Approximation of the ratio between the circumference and the diameter of a circle:
m=3.1415926535897932384626433832795028841971....

First approximations for this peculiar number were already known by 2000 B.C. the Babylonians found

= 3+1/8, the Egyptians m=4(8/9) 2. In the 5th century A.D. in China, Tsu Chung-Chih and

Tsu Kengh-Chih establishedi415926< 1<3.1415927 .

PlaceWindow
procedure PlaceWindow(windowID:longint;
left,top,right,bottom:integer);
Moves the given window to a new place on scregn. , top , right andbottom give the position of

the margins of the new window in “global coordinates” (which have their origin at the top left of the
main screen). PlaceWindow does nothing if the new window position would be off scregpns#

Appendix A: Predefined functions, procedures and arrays A-47

left , the width of the window remains unchangedyadfiom <= top , the height of the window
remains unchanged.

windowID is the window ID of the window, such as it is returnedseywindowID or FrontWindow .
UsewindowID =0 for the front window.

PlaceWindow
procedure PlaceWindow(windowID:longint; windowRect:Rect);

External modules only. Same as the internal function but accepts a Rect data structure as a parameter.

PlotData
procedure PlotData(optional parameter list);

Plots a data set into a graph. Parameters:
xColumn, yColumn (Longint) The x- and y-columns.

window

autoX, autoY

xFirst, xLast

yFirst, yLast

xScaling, yScaling

xAXxis, YAXis
newWindow
newGraph
selRowsOnly
drawErrors
pointType
pointSize
pointThickness
bgPointType
bgPointSize
connected

curveThickness

curveDash

(Longint or String) The window to take the data from. You can either pass
a window ID or the window’s name.

(Boolean) True if the limits of the x-axis (y-axis) of the graph are to be
selected automatically to contain all data points, false if explicit limits are
given in parameters xFirst, xLast (yFirst, yLast) . Default is false.

(real) The start and end of the x-axis. Specify these values if you set
autoX to false.

(real) The start and end of the y-axis. Specify these values if you set
autoY to false.

(Integer) The scaling of the x- and y-axes. Values caimbealing
logScaling , recSclaing (for 1/x-scaling) probScaling (probability
scaling) . Omit this parameter(s) to use the current default scaling.
(Integer) The axis to be used as x- and y-axis. Omit these parameters to
use the default axes.

(Boolean) True if graph is to appear in a new window, false if it is to
appear in the current drawing window.

(Boolean) True if plot is to appear in a new graph, false if it is to appear in
the current graph.

(Boolean) True if only the currently selected rows are to be plotted, false
if all rows are to be plotted.

(Boolean) True if error bars are to be plotted, false otherwise.

(Integer) Index of point type in the point style menu.

(Real) Size of point, between 2 and 128.

(Real) Thickness of lines for drawing points: 0 (auto) , 0.25, 0.5, 1.0.
(Integer) The same as pointType but for the background part of the point.
(Real) The same as pointType but for the background part of the point.
(Boolean) True if the data points are to be connected by lines, false
otherwise. Default: false.

(Real) Thickness of the lines connecting the data points. Omit for using
default thickness.

(Integer) Line dash numbefcorresponding to the dash menu) if points
are connected. Pass the position of the dash pattern in the dash popup
menu. The values between 1 and 8 always correspond to:

A-48 Appendix A: Predefined functions, procedures and arrays

curveRed,
curveGreen,
curveBlue

(Integer) The colour of the lines connecting data points. Pass values
between 0 (dark) and 65535 (bright) . Omit to use the default color..

procedure PlotFunction(

PlotFunction
optional parameter list);

Plots a function into a graph. Parameters:

function
xFirst, xLast
yFirst, yLast

autoY

from, to

xScaling, yScaling

xAXis, YAXis
newWindow
newGraph
xStep
fittedParams

curveThickness
curveDash

curveRed,
curveGreen,
curveBlue

(String) The name of the function to plot. Default: current function.

(real) The start and end of the x-axis.

(real) The start and end of the y-axis. Specify these values if you set
autoy to false.

(Boolean) True if the limits of the y-axis of the graph are to be selected
automatically to contain the whole plot, false if explicit limits are given in
parameters yFirst, yLast. Default is false.

(Real) The x-coordinates where the plot begins/ends.

Default: equal to xFirst, xLast.

(Integer) The scaling of the x- and y-axes. Values caimbealing
logScaling , recSclaing (for 1/x-scaling) probScaling (probability
scaling) . Omit this parameter(s) to use the current default scaling.
(Integer) The axis to be used as x- and y-axis. Omit these parameters to
use the default axes.

(Boolean) True if graph is to appear in a new window, false if it is to
appear in the current drawing window.

(Boolean) True if plot is to appear in a new graph, false if it is to appear in
the current graph.

(Real) Step width for plotting. Set to O for using automatic step width
selection.

(Boolean) True if last fitted parameters are to be used for the function,
false if the parameters in the Parameter window are to be used.

(Real) Thickness of the curve. Omit for using default thickness.

(Integer) Line dash numbefcorresponding to the dash menu) of the
curve. Pass the position of the dash pattern in the dash popup menu. The
values between 1 and 8 always correspond to:

(Integer) The colour of the curve. Pass values between 0 (dark) and
65535 (bright) . Omit to use the default color.

Appendix A: Predefined functions, procedures and arrays A-49

Pos
function Pos(pattern, s: String):integer;

Returns the position of the given pattern in string s. Returns 0 if the pattern is not found in string s.
Example:

Pos(hi', 'hi there") returns 1

Pos('there’, 'hi there") returns 4

Pos(‘glue’, 'hi there'’) returns O

PRandom
function PRandom:extended;

External modules name. Seendom

Print
procedure Print(optional parameter list);
Shows the Print dialog box for a given window. Parameters:
window (Longint or String) The name or window ID of the window. Default:
Front window
See also: PageSetup

Random
function Random:extended:;

Returns a random number evenly distributed between 0 and 1.

Re
function Re(z: complex):extended;

Returns the real part of the complex numbéFo get the imaginary part, call functiom.

ReduceData
procedure ReduceData(optional parameter list)
Reduces and/or smoothes the data in data window Parameters:
window (String or Longint) The window, specified by name or window ID. Omit
for front window.
action (Integer)keepSome (= keep every n-th row)removeSome (= remove
every n-th row) average (= replace n consecutive rows by one single
row holding their averagekmooth (= replace each row by the average of
the row and its n-1 neighbouring rowseepSelRows (= remove all
rows except the ones that are selecteeihoveSelRows (= remove all
rows that are presently selected) . n is given by the parameter “points”

points (Integer) additional parameter if action is keepSome, removeSome,
average or smooth.
selectionOnly (Boolean) True if only the currently selected cells are to be affected, false

if all cells in the data window are to be affected. (Ignored if parameter
“action” is removeSelRows Of keepSelRows)

A-50 Appendix A: Predefined functions, procedures and arrays

Root
procedure Root(optional parameter list);

Finds the root(s) of a function or finds the x-value of a function where its y-value is equal to a given
value. A given x-interval is searched. Parameters:

function (String) The function to be used. Omit for current function.

xMin (Real) The start of the x-interval.

xMax (Real) The end of the x-interval.

subintervals (Integer) The number of sub-intervals to be searched in the x-interval.

When the function’s sign changes over a sub-interval, the sub-interval is
searched for a root.

yValue (Real) The desired y-value. Omit or set to O if finding the x-value where
the function becomes zero(roots) .
printResults (Boolean) Set to true for printing the results to the Results window. Omit

“printResults” or set it to false for suppressing this.
To retrieve the results of a call to procedreet , call the functiorGetResult . Use one of the following
selectors:

rootsCount the number of roots found <(100)
rootsXValue x-value of each root*
rootsYValue y-value of each root*

*pass an index (1..rootsCount) as second parameter to GetResult

The following example finds the roots of the current function between -1 and 1, then prints them:
program RootFinder;
var i, nrRoots:Integer;
begin
Roots(xMin -1, xMax 1, sublintervals 50);
nrRoots := GetResult(rootsCount);
Writeln(nrRoots);
for i := 1 to nrRoots do
Writeln(" ', GetResult(rootsXValue, i));
end;
Note: There's also an obsolete version of Roots
function Root(name:Str255; min,max: extended):extended
which is supported for compatibility with older versions of pro Fit. Don't use it for new developments.

Round
function Round(x:extended)extended,;

Rounds x to the closest integer and returns its value.

RowSelected
function RowSelected(rowNumber:longint)Boolean;

Returns true if anything in the given row of the current data window is selected.

SaveDataAsText
procedure SaveDataAsText(windowlID:longint; fileName:Str255);
Saves a data window as a text file.

windowID is the window ID of the window, such as it is e.g. returnedGleywindowID or
FrontWindow .

Appendix A: Predefined functions, procedures and arrays A-51

fleName is the name of the file. fleName contains a simple file name, the file is placed in pro Fit's
folder. If fleName contains a file path (e.gdD:MyFolder:file'), the file is placed in the folder
defined in the file path. Pags for fleName to bring up a dialog box asking the user where to save
the file.

UseSetTextFileFormat if you want to specify how the text file must be formatted.

SaveDrawingAs
procedure SaveDrawingAs(windowlID:longint; fileName:Str255;
format:longint);

Saves a drawing window as a pro Fit filefGfmat = defaultFormat), a PICT file (ifformat =
pictFormat) or a EPS file (iformat = epsFormat).

windowID is the window ID of the window, such as it is returnedsbywindowID Or FrontWindow .

fleName is the name of the file. fieName contains a simple file name, the file is placed in pro Fit's
folder. If fleName contains a file path (e.¢HD:MyFolder:file'), the file is placed in the folder
defined in the file path. Pass for fileName to bring up a dialog box asking the user where to save
the file.

SaveDrawingAs(L,'bla',default) is equivalent tsavewindowAs(L, 'bla’).

SaveParameterSet
procedure SaveParameterSet(optional parameter list)
Saves the the parameters that currently appear in the Parameter window. Parameters:
set (String)The name of the set. Omit to save all sets belonging to the given
function.
forAll (Boolean)True if the parameter set is to be available for all functions, false
if the parameter set is only to be available for the current function.
Default: false
file (String)The file where the parameter set must be saved. Omit to save as
permanent sets.
See also: AddParameterSet, UseParameterSet, LoadParameterSet, DeleteParameterSet

Save

procedure Save(windowlID:longint);

Equivalent to choosing Save from the File menu. Causes a run time error the window has never bee
saved.

SaveWindow

procedure SaveWindow(optional parameter list);
Saves a window. Parameters:
window (Longint or String) The name or window ID of the window. Default:
Front window
file (String) The file to save the window into. Use a simple name or a file
path. Default: the file currently attributed to the window.
type (Integer) The type of the file if non-default typextFileType ,

PICTType , EPSFType). Omit for default type. To control the format for
exporting data to a text file, cabataExportOptions before calling
SaveWindow .

See also GetFileDirectory, SetDefaultDirectory, OpenFile.

A-52 Appendix A: Predefined functions, procedures and arrays

There is also an obsolete versiorsafewindow supported for compatibility with earlier versions. Do
not use it in new programs:

SaveWindowAs
procedure SaveWindowAs(windowlID:longint; fileName:Str255);

Saves the contents of the given window into a file with the specified file name.

windowID is the window ID of the window, such as it is e.g. returnedGleywindowID or
FrontWindow .

fleName is the name of the file. fieName contains a simple file name, the file is placed in pro Fit's
folder. If fleName contains a file path (e.¢HD:MyFolder:file'), the file is placed in the folder
defined in the file path. Pass for fileName to bring up a dialog box asking the user where to save
the file.

SelectAll
procedure SelectAll;

Equivalent to selecting “SelectAll” from the “Edit” menu.

SelectBottom
function SelectBottom:longint;
Returns the row number of the bottom-most selected cells of the current data window or O if no cells ar

selected. Causes a run-time error if no data window is open.
External modules must usetSelection

SelectCell
procedure SelectCell(optional parameter list)
Selects one or more cells in the current data window. Parameters:
row (Longint) A row index if you want to select data in a single row. Omit if
you use fromRow, toRow.
fromRow, toRow (Longint) The range of rows if you want to select data in several rows.
Omit if you use the parameter “row”.
col (Longint) A column index if you want to select data in a single column.
Omit if you use fromCol, toCol.
fromCol, toCol (Longint) The range of columns if you want to select data in several
columns . Omit if you use the parameter “col”.
options (Integer) Controls what happens with the previous selection. Pass
addContinuously (= add to present selectiorprgetOld (=
forget present selection, default)
SelectCells

procedure SelectCells(left,top,right,bottom:longint);

Obsolete UseselectCell instead.
Removes the current selection from the current data window and selects all cells within the giver
rectangle. Call with all arguments = 0 to deselect all cells.

SelectColumn
procedure SelectColumn(optional parameter list)
Selects a column or a range of columns in the current data window. Parameters:
col (Longint) The column to select. Omit if you use fromCol, toCol.
fromCol, toCol (Longint) The range of columns to select if you want to select several
columns. Omit if you use the parameter “col”.

Appendix A: Predefined functions, procedures and arrays A-53

options (Integer) Controls what happens with the previous selection. Pass
addContinuously (= add to previous selection) forgetOld (=
forget previous selection, default)

SelectFunction
procedure SelectFunction('myFunc’);
Selects the given function in the “Func” menu and makes it the current function. func is the name of the
function. A call toSelectFunction('myFunc') IS quivalent taSetOptions(currentFunction
'myFunc’)

SelectLeft
function SelectLeft:longint;
Returns the column number of the leftmost selected cells of the current data window or O if no cells ar

selected. Causes a run-time error if no data window is open.
External modules must usetSelection

SelectRight
function SelectRight:longint;
Returns the column number of the rightmost selected cells of the current data window or O if no cells ar

selected. Causes a run-time error if no data window is open.
External modules must usetSelection

SelectRow
procedure SelectRow(optional parameter list)
Selects a row or a range of rows in the current data window. Parameters:
row (Longint) The row to select. Omit if you use fromRow, toRow.
fromRow, toRow (Longint) The range of rows to select if you want to select several
columns. Omit if you use the parameter “row”.
options (Integer) Controls what happens with the previous selection.

PasdorgetOld (= forget present selection, defaul&dgContinuously

(= add to present selection, extending it continuously),
addDiscontinuously (= add to present selection, extending it
discontinuously) deselectlt (= deselect the specified rows)

SelectRows
procedure SelectRows(top, bottom:longint; select:Boolean);
Obsolete UseSelectRow instead.

Selects all rows between top and bottom if select = true, deselects them if select = false.
If there are selected rows outside top/bottom, they remain selected

SelectTop
function SelectTop:longint;
Returns the row number of the topmost selected cells of the current data window or O if no cells are

selected. Causes a run-time error if no data window is open.
External modules must usetSelection

SelectWindow
procedure SelectWindow(wind:String or Longint)

Moves the specified window in front of all other windows. wind is the windowID or the name of the
window.

A-54 Appendix A: Predefined functions, procedures and arrays

SetArrowStyle
procedure SetArrowStyle(location:integer; style:integer;
size:extended);

Specifies the default arrow style for lines and polygons.

location defines if you want to change the style of the arrow at the beginning of thedmer{ =
1), end ¢) or both beginning and ensl)(

Setstyle to0 if there should be no arrow at the specified locationstget to1..12 to select the
arrow style corresponding to the entry in the arrow style popup memu. values from 1 to 6
correspond to the 6 predefined styles:

L > >
Z > S >
> 6 >

style values from 7 to 12 correspond to the 6 custom styles which appear in the arrow style menu. Se
style to -1 for leaving it unchanged.
size : The size in points (1/72 inches). Set it to 0 for leaving it unchanged.
The following program draws a bent arrow as shown on the right.

program OneArrow;

begin

SetlLineStyle(5, 1); {line thickness}

SetArrowStyle(1, 2, 20); {start arrow style}

SetArrowStyle(2, 1, 20); {end arrow style}

OpenPoly(1, false); {draw a smooth polygon}

MoveTo(100,100); LineTo(150,100); LineTo(150,50);

ClosePoly;

end;

SetAxisAttributes
procedure SetAxisAttributes(whichAxis:integer; flags:longint);

Sets various drawing options of an axis in the current graph.

whichAxis IS equal toxAxis oryAxis and defines if you want to change the current x- or y-axis. (To
set the current axis, cabtCurrentAxis)

flags is 0 or a sum of the following constanégualToMain, drawAxisLine, drawTicks,
drawMajorTickLabels, drawMinorTickLabels, plusSideTicks, minusSideTicks,

plusSideLabels, labelsOutsideFrame.

Example:

SetAxisAttributes(xAxis,sameAsMain+drawAxisLine+ticksPlusSide+drawTicks);

SetAxisPosition
procedure SetAxisPosition(whichAxis:integer; position:extended);

Changes the position an axis in the current graph.

whichAxis is equal txAxis oryAxis and defines if you want to change the current x- or y-axis. (To
set the current axis, cabtCurrentAxis)

position IS the position in the coordinates of the main axis perpendicular to the specified axis. If
position IS outside the range of this main axis, it is set to its minimum/maximum.

SetBGDataPointStyle
procedure SetBGDataPointStyle(style:integer; size:extended);

Sets the default background style of data points.

Appendix A: Predefined functions, procedures and arrays A-55

style ,size have the same meaning as for the roug#bataPointStyle

If style designates a “composite point”, only the background of this composite point is used.
Always callSetDataPointStyle before callingsetBGDataPointStyle

For more information se®s=tDataPointStyle

SetBoxTitle
procedure SetBoxTitle(title:Str255);

Sets the title of the dialog box invoked with the next call to the predefined fungiion (or InputBox
for external modules).

SetCell
procedure SetCell(row,column:longint; s:Str255);
Sets the string in the given cell of the current data windaw to

If the given cell is in a numeric columsetCell attempts to convestinto a number. If this conversion
fails, the given cell is cleared.

SetColHandle
procedure SetColHandle(col:longint; colH:Handle);

External modules only. For advanced programming. Sets a given column to thecd&ta in
The organization of the data tolH depends on the data type of the column. See also the entry for
GetColHandle
If the column is of typdoatColumn , colH is a handle of typEloatColumnHandle (handle to an array
of 4-byte floating point values), if it gubleColumn , colH is of typeDoubleColumnHandle (handle to
an array of 8-byte floating point values), if ittsxtColumn , colH is of typeTextColumnHandle
(handle to a record of tymaringData). (To get a column's type, caktColType . You can find more
information in the files proFit_interface.p / proFit_interface.h)
Once you calbetColHandle , the handle becomes property of pro Fit — do not dispose it.
colH can either be:
* a handle that you allocated yourself. In this case, the Handle's size must be:
4*(nrRows+1) for columns of typdéloatColumn
8*(nrRows+1) for columns of typeloubleColumn
14 + size of all strings for columns of typextColumn
« a handle that you obtained fragetColHandle
* nil if you want to clear the given column
This routine should be used by experienced programmers only. Warning: Accessing text columns in thi
way isnot recommended. The definition of the data structures may change in the future.

SetColName
procedure SetColName(col:longint;name:Str255);

ObsoleteUse SetColumnProperties instead.

Changes the name of a column in the current data wingowis the number of the columname its
new name.

SetColName causes a run-time error if there is no data window opercar ifs outside the bounds of
the data window.

SetColType
procedure SetColType(columnNumber:longint; theType:longint);
ObsoleteUse SetColumnProperties instead.

Changes the type of the column specifieccdymnNumber totheType .theType can have the values
textColumn (for text columns)floatColumn (for numeric columns having a range of -1e30 ... 1e30,

A-56 Appendix A: Predefined functions, procedures and arrays

l.e. 4-byte floating point values) @dbubleColumn (for numeric columns having a range of -1e300 ...
1e300, i.e. 8-byte floating point values)

SetColumnPr_

procedure SetColumnProperties(optional parameter list)
Sets the properties of one or more columns in the current data window. Parameters:
col (Longint) The index of the column to change. Omit if passing values for a
column range in parameters “firstCol”, “lastCol”.
firstCol, lastCol (Longint) The range of columns to change. Omit if passing a single
column in parameter “col”.
name (String) The title of the column(s) . Omit for leaving it unchanged.
nrDecimals (Integer) The number of decimals for numeric columns. Omit for leaving
it unchanged.
format (Integer) The format for numeric columns: scientificFormat or
floatingFormat. Omit for leaving it unchanged.
width (Integer) The width of the column(s) in pixels. Omit for leaving it
unchanged.
type (Integer) The type of the column{®gatColumn (4 byte floating point

having a range of -1e30 ... 1e3@puybleColumn (8 byte floating point
having a range of -1e300 ... 1e30@¢xtColumn . Omit for leaving it
unchanged.

SetColWidth
procedure SetColWidth(columnNumber:longint; width:integer);
ObsoleteUse SetColumnProperties instead.

Sets the width of the column specifieccittumnNumber to the value (in pixels) passedwtith . width
must be an even number between 14 and 510.

SetCurrentAxis
procedure SetCurrentAxis(whichAxis:integer; axisID:integer);

Sets the current (x- or y-) axis. The current axis is used for plotting as well as in various other calls
such assetAxisAttributes

whichAxis IS eitherxAxis oryAxis . axisID designates the number of the axis.
Example:SetCurrentAxis(xAxis,2) makes X2 the current x-axis.

SetCurrentGraph
procedure SetCurrentGraph(graphiD:longint);

Sets the current graph to the graph identifiedylaphiD . To makeno graph the current graph, set
graphiD t0O0.

SetCurrentWindow
procedure SetCurrentWindow(windowlID:longint);

This routine makes a window the current window of its kind.

There is a “current data window”, a “current drawing window”, and a “current text window”. These are
the windows used by the output routines suctir@3o andSetData.

When a new window is opened, it automatically becomes the current window of its kind.

windowID is the window ID of the window, such as it is returnedsbgwindowID Or FrontWindow .

Appendix A: Predefined functions, procedures and arrays A-57

SetCurveFill
procedure SetCurveFill(whichAxis:integer; axisID:integer);

Sets the fill style of the next plotted curve. To fill the area between the curve and an x-axis or an y-axis

setwhichAxis tO xAxis or yAxis, respectivel y.axisID specifies the index of the axis. To disable
curve filling, s& axisiID t0O0.
A call to SetCurveFill affects all subsequent callsdpenCurve andOpenDataSet calls.

SetData

procedure SetData(row,column:longint;ex:extended);
External modules only. Sets the value of the specified cell of the current data wirgtow t

SetDataPointStyle
procedure SetDataPointStyle(style:integer; size:extended,
thickness:extended);

Sets the default data point style. This style is used for all subsequent plotting of data points.
style defines the “shape” of the data point:
0: pixel (the smallest point),

1-17 - 0 1 2 3 4 5 6 7 8

¥+ XEH000 ¢

10 11 12 13 14 15 16 17

QAAvVE@ﬁﬁ

-1..-8 : the eight custom points in the last row of the point style menu. size is the size in points
size is the size of the point in pixels.
thickness is 0, 0.25, or 0.5, or 1.0. Use 0 if you want to automatically use smaller lines for smaller
points.
Points can beimpleor compositeA simple point consists of a single symbol, such as the styles 0 — 13
above. Composite points consist of two symbols (a foreground and a background one) plotted on top ¢
each other, such as the styles 14 — 17 above.
SetDataPointStyle sets the foreground symbol or, if a composite point is used, both foreground and
background symbols. To set the background symbol separatélgetea@DataPointStyle

SetDataSize
procedure SetDataSize(numberOfRows, numberOfColumns:longint);

Obsolete UseSetDatawindowProperties instead.

Sets the number of columns and rows of the current data window. The number of rows and column
must be between 1 and 30000.

SetnumberOfRows 10 0 if you only want to change the number of columns$.nS@berOfColums to 0 if

you only want to change the number of rows.

To get the current size of a data window, use the functiotisvs andNrCols .

SetDataWindow...

procedure SetDataWindowProperties(optional parameter list)

Sets the properties of a data window. Parameters:
window (String or Longint) The name or windowID of the window to be affected.
name (String) The title of the window. Omit for leaving it unchanged.
boundsLeft,
boundsRight,
boundsTop,

A-58 Appendix A: Predefined functions, procedures and arrays

boundsBottom (Integer) The bounds of the window in global screen coordinates. Omit
for leaving them unchanged.

info (String) The info text attributed to the window. Omit for leaving it
unchanged.

fontName (String) The font to be used in the window. Omit for leaving it
unchanged.

fontStyle (Integer) The font style to be used in the windgwaif, bold,
italic, underline, outline, extended, condensed or any sum of
these values) . Omit for leaving it unchanged.

fontSize (Integer) The font size to be used in the window. Omit for leaving it
unchanged.

nrRows, nrCols (Integer) The number of rows/columns. Omit for leaving this unchanged.

SetDefaultCols
procedure SetDefaultCols(xCol,yCol,xErrCol, yErrCol:longint);

Sets the “default columns” of the current data window. The default x- and y-columns are those column:
that are shown in the preview window. Default columns are marked with “x”, A%, " Ay” in their

column header.

You can sekErrCol,yErrCol to zero to “undefine” the column.

Set any of theCol,yCol xErrCol,yErrCol to-1 if you don't want to change it.

SetDefaultDirectory
procedure SetDefaultDirectory(path: string);
Sets the default directory for saving files to the one specified by the given path-name. Pass the emp

string as a paramter to re-set the default directory to its original segirthe directory where the pro
Fit application is found.

SetEBarStyle
procedure SetEBarStyle(capLength,capThick, lineThick:extended);

Sets the style of the error bars that will be generated by
OpenDataSet/AddDataPoint/CloseDataSet . Error bars are generated
by AddDataPoint when the error parameter ©@fenDataSet Ssays So.
capLength : The length of the cap in pixels, -1 to make the caps as wide
as the data points, -2 to get a box (works only iire y-errors are
given).

capThick , lineThick : The thickness of the caps and of the bar lines in
pixels (0.001 — 50)

T barline

cap——

SetErrorAnalysis
procedure SetErrorAnalysis(confidence:extended,; iterations:longint);

Sets the options for the error analysis to be used in the next eall.teonfidence is the confidence
interval probability in perceniterations is the number of simulated data sets to be analyzed.

SetFillColor
procedure SetFillColor(red,green,blue: longint);

Sets the default RGB color used for filling shapes. Used for drawing or filling cuedesgreen ,
blue are integers betwe@nandes535 .

Appendix A: Predefined functions, procedures and arrays A-59

SetFillPattern
procedure SetFillPattern(pattern:integer);

Sets the default fill pattern used for filling drawing objects. Set pattern to 0 for making the shapes
transparent. The following figure shows a list of all patterns and their pattern number:

0 1 9
anse - - - - - [[|]]I|]I|]I|]]]

10 2 18 o
'-.-':'-':'- M . TR \\\\ gl
l':'-:':':.'-:'::: EOrOOns e W :ﬁf\f\ﬂ o (L0

20 22 23 24 25 26 27 28 29
NI
1 1

30 31 32 33 34 35 36 37 38 39
L R I T aaad FFFEY

SetFitDefaults
procedure SetFitDefaults(algorithm:integer;
yErrDistribution, XErrDistribution:integer;
XErrColumn:longint; XxErrValue:extended;
stopTime:extended);

Sets advanced fitting options. It sets the x-error column and type, the algorithm and the stopping criteri
to be used in all subsequent callsito.

algorithm : the algorithm to be used (1: Levenberg-Marquardt, 2: Montecarlo, 3: Robust, 4: linear
regression, 5: polynomial)

yErrDistribution, xErrDistribution : the distribution of the x- and y- errors. They can be
gaussDistr, doubleExpDistr, lorentzDistr, andrewDistr, Or tukeyDistr

xErrColumn tells if x-errors should be used: set it to O if x-errors are unknown, to -1 if they are constant
(pass the value ixerrvalue), to -2 if they are given in percent (pass the percentagarivalue), or

to the number of an x-error column.

stopTime tells when to stop Monte Carlo fitting: pass a value > 0 to give the maximum number of
iterations, a value < 0 to give a negative maximum time in seconds, O for continuing fitting until manual
interruption.

SetFitParamRange
procedure SetFitParamRange(paramNr:integer; rangeMin:extended;
rangeMax:extended;asPercent: Boolean);
Sets the fitting range for parameparamNr as it is used for Monte-Carlo fits.d§Percent is true the

range values can be given as a percentage offset from the parameter value. The fitting ranges set by t
command stay valid until the next fit command has been executed.

SetFunctionParam
procedure SetFunctionParam(name:Str255; i:integer; value:extended);

Sets the default value of a function parameter as it appears in the parameters wimdasvthe name
of the function as it appears in the Func menu. Use an empty strjrtg épecify the function currently
selected in the Func menu. This parameter is case sensitsrzéhe parameter indexalue its new
value.
Example:

setFunctionParam('Polynom’, 1, 6)
sets the degreedf) of the built-in function “Polynom” to 6.

A-60 Appendix A: Predefined functions, procedures and arrays

SetFunctionProp_

procedure SetFunctionProperties(optional parameter list)
Sets the properties of a function in the Func menu. Parameters:
function (String) The function (omit for currently selected function)
shown (Boolean) True if the function is shown in the Preview window, false if
not. Omit to leave unchanged.
nrParams (Integer) The number of parameters. Omit to leave unchanged. Do not
change the number of parameters while a function is being used, e.g. for
fitting.

SetGlobalData
procedure SetGlobalData(value: real; index: integer);

Sets the value under the given index in a global data array. This data array is shared between :
functions and programs. It can be used for communication between programs, functions, scripts an
modules.

The index must between 0 and 99.

See also: GetGlobalData

SetGraphAttributes
procedure SetGraphAttributes(flags:longint);

Sets various attributes of the current graph.
flags is0 or a sum of the following constants:

drawFrame : draw the frame

drawMajorGridX : grid lines at major x-ticks
drawMinorGridX : grid lines at minor x-ticks
drawMajorGridY : grid lines at major y-ticks
drawMinorGridy : grid lines at minor y-ticks
plotBehindAxes : first draw curves, then axes
gridinFront first draw the rest, then the grid
gridinMiddle ~ : draw grid between axes and curves

The last two constants cannot be used at the same time

SetGraphFrame
procedure SetGraphFrame(left,top,right, bottom:extended);

Changes the position and size of the current graph to match the new valuetlels@raphRect for
setting the default size of future graphs.)

SetLabel
procedure SetLabel(whichAxis:integer; tickNum:integer;
labelNumber:extended);

Sets the label of tick mark having numbiekNum to correspond to the given value. Accesses the
current x- or y-axis (usehichAxis=xAxis Or whichAxis=yAxis).

SetLabelsFormat
procedure SetLabelsFormat(whichAxis:integer; format:integer;
decimals:integer);
Sets the number format of the labels of the current x- or yxeidAxis is either xAxis or yAXis.
format :-1,0,1 for auto, decimal , and exponential, respectively.
A format parameter equal to any other number sets the labels format to fixed exponential and uses form
as the number in the exponent.

Appendix A: Predefined functions, procedures and arrays A-61

SetLegendProperties
procedure SetLegendProperties(optional parameter list);

Sets the visibility, position and size of the legend of the current function.
Parameters are:

visible (Boolean) Show or hide the legend.
offsetx, offsety (Real) Offset between topleft of legend and topright of graph.
width, height (Real) Size of an entry in the legend (left part).

SetLabelText
procedure SetLabelText(whichAxis:integer; tickNum:integer;
labelText:Str255);
Sets the label of the given tick mark to the to given string. Accesses the current x- or y-axis (Use
whichAxis=xAxis or whichAxis=yAXis).
This routine is usually used after calls to AddTick.

SetLineColor
procedure SetLineColor(red,green,blue: longint);

Sets the line default color to be used for any future drawing in the current drawing wiedlpween ,
blue are integers betwe@nand6s535 .

SetLineStyle
procedure SetLineStyle(thick:extended; dash: integer);

Sets the default line style to be used for any future drawing in the current drawing window.

thick is the line thickness in points (1/72 inches). Set it to O for leaving it unchanged.

dash is the dash pattern, and its numerical value corresponds to the position of the dash pattern in tt
dash popup menu. The values between 1 and 8 always correspond to:

Values between 9 and 12 correspond to the four last customizable entries in the dash styles menu.
value of O leaves the dash style unchanged.

SetNewGraphRect
procedure SetNewGraphRect(left,top,right, bottom:extended);

Sets the size and position of the next graph generated anétiteNewGraph , PlotData and
PlotFunction . Subsequent calls toreateNewGraph , PlotData andPlotFunction will use the
normal default position and size, i.e. the effeceedNewGraphRect only extends to the one graph
created next. (UseetGraphFrame for setting the size of the current graph.)

SetOptions
procedure SetOptions(optional parameter list)
Sets some options of pro Fit. Parameters:
currentFunction (String) The current function. (Alternative call ®etOptions(
currentFunction 'myFunc') IS SelectFunction(‘myFunc’)) .
Omit for leaving the current function unchanged.
decimals (Integer) The number of decimals to be used for writing numbers in the

results window. Pass a negative value for setting the total number of
digits, a positive value for setting the number of digits after the decimal
point. Omit for leaving the setting unchanged.

A-62 Appendix A: Predefined functions, procedures and arrays

errorAlerts (Boolean) true if error alerts are to be shown when running into errors
during the execution of programs or scripts. Omit for leaving this option
unchanged.

scriptDebugging (Boolean) Set to true if debug info is to be printed while running
AppleScripts. Omit for leaving this option unchanged.

SetParamDefaults
procedure SetParamDefaults(i:integer;value:extended; mode:integer;
name:Str255;min,max:extended);
Obsolete UseSetParameterProperties instead.
Sets the value, fitting mode, name and limits of a parameter of the currently running funcditre
parameter indexyalue its new valuemode its new fitting mode (can b&nstant , inactive , Or
active), name its new name, andin, max the lower and upper boundaries of the parameter.

SetParamDefaultValue
procedure SetParamDefaultValue(i.integer;value:extended);

Obsolete UseSetParameterProperties instead.

Sets the default value of a parameter of the currently running function. The default value is the value the
appears in the parameters windows the parameter indexalue the new value. This function is
generally used within the predefined function “Initialize”.

SetParameterProperties

procedure SetParameterProperties(optional parameter list)
Sets some properties of a parameter of the current function. Parameters:
param (Integer) The index (1 based) of the parameter to be changed.
name (String) The name of the parameter as it appears in the Parameter window.
Omit for leaving it unchanged.
value (Real) The value of the parameter as it appears in the Parameter window.
PassqualX for setting it “=x". Omit for leaving it unchanged.
min, max (Real) The lower and upper limits of the parameter. Omit for leaving the
corresponding limit unchanged.
mode (Integer) The mode of the parameter. Useraminactive ,

paramActive , paramConstant for making the parameter inactive, active
or constant. Omit for leaving the mode unchanged.

SetParamLimits
procedure SetParamLimits(i:integer; min,max:extended);

Obsolete UseSetParameterProperties instead.

Sets the limits of a parameter of the currently running function. Parameter limits define the range of
values that are admissible for a given parameter (for example during adithe parameter index, and

min , max its lower and upper boundaries.

SetParamName
procedure SetParamName(i:integer; name:Str255);
Obsolete UseSetParameterProperties instead.

Sets the name of a parameter of the currently running functisrthe parameter indexame its new
name.

Appendix A: Predefined functions, procedures and arrays A-63

SetRange
procedure SetRange(whichAxis:integer; min,max:extended,;
scaling:integer);
Sets the range and scaling of the current x-axigh{¢thAxis=xAxis) or y-axis (ifwhichAxis=yAxis).

min, max IS the new range of the axigaling is its new scaling and can take the values 0 (linear
scaling), 1 (logarithmic scaling), 2 (1/x-scaling), 3 (probability scaling), -1 (keep scaling unchanged).

SetTextFileFormat
procedure SetTextFileFormat(colDelimiter, endOfLine: Str255;
withColTitles,copylnfo: Boolean;
noHeaderLines, inout: longint);

Sets the default format for loading and saving text files 84tleDataAsText andOpenData .

colDelimiter andendOfLine define the strings to be inserted between columns and between rows.
Pass an empty string () for colDelimiter tu use a tabulator. Pass an empty string ¢r\r for
endOfLine tu use a carriage return.

colDelimiter andendOfLine can be built by any string of characters. égbelimiter ~ , you can

use\t for a tabulator. FogndOfLine , you can us@r' and\n' , for a carriage return and a line
feed, respectively. Any other character preceded bys ignored.

SetwithColTitles=true to save the titles of the colummsgse if you don’t want to save the titles.

Pass true fotopyinfo to save the “info field” of the data window at the beginning of the text file.
noHeaderLines specifies the number of lines that must be skipped at the beginning of a text file when
loading it into pro Fit.

Setinout=1 to modify the settings famporting text files, setnout=0 to modify the settings for
exportingtext files.

SetTextStyle
procedure SetTextStyle(fontName:Str255; size:extended; style:integer);

Sets the default font, font size, and style for subsequent text drawing. Text color can set using th
SetLineColor routine.

SetWaitText
procedure SetWaitText(s1,s2,s3,54,55,56:Str255);

Writes the strings1 ...s6 into proFit's progress window, which is displayed during lengthy
operations. The strings are arranged in a two columns by three rows arrangement:

sl s2
s3 s4
s5 s6

Use an empty string if you don't want to change it. Seesal8aitTitle

SetWaitTitle
procedure SetWaitTitle(s:Str255);

Writes the strings as a title into pré&it's progress window, which is displayed during lengthy
operations. See alsSetwaitText

SetWindowlInfo
procedure SetWindowInfo(windowlID:longint;info:Str255);

Obsolete UseSetWindowProperties instead.

Sets the info field of a window to the given string.

(The info field of a window can be viewed by choosing the Get Info... command from the File menu.
For data windows, it is the text that appears when you drag down the info hook.)

windowID is the window ID of the window, such as it is returnedsbywindowID Or FrontWindow .

A-64 Appendix A: Predefined functions, procedures and arrays

SetWindowlInfo
procedure SetWindowInfo(windowlD:longint; length:longint; info:Ptr);

External Modules only. Sets the info field of a window to the given text.

info is a pointer to the new info text ankngth is its length in bytes. Call
SetWindow(windowID,0,nil) to clear the info text.

windowlID is the window ID of the window, such as it is returnedsbyvindowID or FrontWindow .

SetWindowProp_

procedure SetWindowProperties(optional parameter list)
Sets the properties of a window. Parameters:
window (String or Longint) The name or windowID of the window to be affected.
name (String) The title of the window. Omit for leaving it unchanged.
boundsLeft,
boundsRight,
boundsTop,
boundsBottom (Integer) The bounds of the window in global screen coordinates. Omit
for leaving them unchanged.
info (String) The info text attributed to the window. Omit for leaving it
unchanged.
fontName (String) The font to be used in the window. Omit for leaving it
unchanged.
fontStyle (Integer) The font style to be used in the windgwaif, bold,
italic, underline, outline, extended, condensed or any sum of
these values) . Omit for leaving it unchanged.
fontSize (Integer) The font size to be used in the window. Omit for leaving it
unchanged.

SetWindowTitle
procedure SetWindowTitle(windowlID:longint; name:Str255);
Obsolete UseSetWindowProperties instead.
Sets the title of the given window to the striragne.
windowID is the window ID of the window, such as it is e.g. returnedGleywindowID or
FrontWindow .

Sin
function Sin(x:extended):extended;
Returns the sine of x.
Sinh
function Sinh(x:extended):extended;
Returns the hyperbolic sine of x. sinh is defined by
e -
sinh(x) =
(="
Sort
procedure Sort(optional parameter list)

Sorts rows in a data window. Parameters:

Appendix A: Predefined functions, procedures and arrays A-65

window (String or Longint) The window, specified by name or window ID. Omit
for front window.

referenceCol (Longint) The column to be used for sorting.
order (Integer)sortAscending Or sortDescending , the sort order
selectionOnly (Boolean) True if only the rows of the currently selected columns are to be

sorted, false (or omitted) if the rows of all columns are to be sorted

SpeakString
procedure SpeakString(s:Str255);

Lets your hardware read the text contained in the sériffigext-to-speech extensions are not installed
on your computer, this routine does nothing.

Sqr
function Sgr(x:extended):extended,;
Returns the square of X. sgr(= x2
Sqrt
function Sqgrt(x:extended):extended;
Returns the square root of x. Causes a run-time error for a negative argument
Statistics
Statistics(optional parameter list)
Performs statistical analysis on a data window. Parameters:
window (String or Longint) The window’'s name or window ID of your data. Omit
for using the frontmost datawindow.
column (Longint) The column to work on or O for all columns. Omit if
“selectionOnly” is true.
selRowsOnly (Boolean) True if only the currently selected rows are to be analyzed.
Only used when parameter “selectionOnly” is false.
selectionOnly (Boolean) True if the currently selected cells are to be analyzed. False if
the columns specified in parameter “column” are to be analyzed.
withBasic (Boolean) False for suppressing calculation of the sum, mean, variance,
standard deviation and absolute deviation. Default: true.
withSkew (Boolean) False for suppressing calculation of skewness and kurtosis.
Default: true.
withMedian (Boolean) False for suppressing calculation of mean median, maximum
and minimum. Default: true.
printResults (Boolean) True for printing the results to the Results window. Omit

“printResults” or set it to false for suppressing this.
To retrieve the results of this command, call GetResult with one of the following selectors:

statCount : number of evaluated values
statSum . sum

statMean . mean

statMedian median

statStdDeviation : standard deviation
statMeanAbsDeviation . mean absolute deviation
statMinumum minimum value

A-66 Appendix A: Predefined functions, procedures and arrays

statMaxumum maximum value
statVariance variance
statKurtosis ik urtosis

StopExecution
procedure StopExecution;

External modules only. Tells pFdt to interrupt execution of the current module as soon as possible.

Str255ToNumber
function Str255ToNumber(s:Str255; var x:extended):integer
External modules only. Converts the string s to a number X. s can be a numeric string or an expressia

Return values are 0 (conversion successful), 1 (x is infinite), 2 (s is empty), 3 (x is an NAN (invalid
number), 4 (user aborted), or 5 (run time error).

StringToNumber

function StringToNumber(s: String; var x: real):integer;
Converts the string to a numbex and returns a result code as follows:

0: conversion successful

1:x is infinite

2:s is empty

3:x is an NAN (not a number)

4: user aborted calculation

5: run time error

Tabulate

procedure Tabulate(optional parameter list)
Tabulates a function to a data window. Parameters:

function (String) The function to be tabulated, omit for current function.

from, to (Real) The first and lastvalue to be tabulated.

stepValue (Real) The step between tabulated points. Omit if you pass autoStep or

pointsStep for parameter “step”
step (Integer)numericStep (= tabulate for equally spaced points as defined in

stepValue) autoStep (= choose step width automatically, use a larger
number of points where the function varies quicklyointsStep
(tabulate for all values of the x column in the current data window) .
Default if omitted: numericStep

parameter (Integer) Omit or set to O if tabulating the function by varying its x-value.
Set to the number of a parameter for tabulating the function by varying
this parameter.

xValue (Real) defines the function’s x-value if you pass a non-zero value for
“parameter”. Omit otherwise.
fittedParams (Real) true for tabulating the function with the parameters obtained in the

last fit, false (default) if tabulating the function with the parameters
given in the Parameter window.

Appendix A: Predefined functions, procedures and arrays A-67

TabulateExt_
procedure TabulateExtrema(optional parameter list)

Finds the minima/maxima of a function by varying its x-value in a given interval. Calculates a table of
the extrema for different values of a parameter of the function. Parameters:

function (String) The function to be used. Omit for current function.
XxMin , xMax (Real) The start and end of the x-interval.
parameter (Integer) The parameter to be varied for tabulating. Pass -2 for varying

“xMin”, -1 for varying “xMax” (however, these two options do not make
much sense!)

from, to (Real) The start and end value of the parameter to be varied.
stepValue (Integer) The step for increasing the parameter.
subintervals (Integer) The number of sub-intervals to be searched in the x-interval.

When the function’s derivative changes its sign over a sub-interval, the
sub-interval is searched for a minimum or maximum.
See also: Extrema, Optimize

Tabulatelnt
procedure Tabulatelntegral(optional parameter list)

Calculates the integral of a function over a given x-range. Creates a table of the integral for differen
values of a parameter of the function or for different values of a limit of the x-range. Parameters:

function (String) The function to be used. Omit for current function.

xMin , xMax (Real) The start and end of the x-range to be integrated.

parameter (Integer) The parameter to be varied. Pass -2 for varying “xMin”, -1 for
varying “xMax”

from, to (Real) The start and end value of the parameter (or xMin, xMax) to be
varied.

stepValue (Integer) The step for increasing the parameter (or xMin, xMax) .

iterations (Integer) The number of iterations (5 .. 15) . The more iterations you use,

the more accurate the result becomes.
See also: Integrate

TabulateRoots
procedure TabulateRoots(optional parameter list)
Finds the root(s) of a function (or finds the x-value of a function where its y-value is equal to a given

value) within a given x-range. Varies a parameter and tabulates the roots for different values of thi
parameter in a data window. Parameters:

function (String) The function to be used. Omit for current function.

xMin, xMax (Real) Start and end of the x-range.

parameter (Integer) The parameter to be varied. Pass -2 for varying “xMin”, -1 for
varying “xMax” (however, these two options hardly ever will make
sense)

from (Real) The start value of the parameter to be varied.

to (Real) The end value of the parameter to be varied.

stepValue (Integer) The step for increasing the parameter.

subintervals (Integer) The number of sub-intervals to be searched in the x-interval.

When the function’s sign changes over a sub-interval, the sub-interval is
searched for a root.

A-68 Appendix A: Predefined functions, procedures and arrays

yValue (Real) The desired y-value. Omit or set to O if finding the x-value where
the function becomes zero.
See also: Root

Tan
function Tan(x:extended):extended;
Returns the tangent of x. tahE sink)/cos).
Tanh
function Tanh(x:extended):extended;
Returns the hyperbolic tangent of x. tanh is defined by
e’ -e* _ sinh(x
tanh(x) = — — = ().
e” +e" cosh(x)
TenTo
function TenTo(x:extended).extended,;
Returns 10 to the power of x. tentp(= 10¢
TestData
function TestData(row,column:longint)Boolean;
External modules name. Se&aOK.
TestStop

function TestStop:Boolean;

External modules only. Returmsie if the current operation should be interrupted (because of user
wish or praFitwish).

TickCount
function TickCount:extended,;
Returns the number of 1/60 seconds since your computer was started. It can be useful for timing yot

programs or functions or for writing intermediate results or status information at regular time-intervals to
the Results window.

TimeString
function TimeString(secs: Boolean):String
Returns a string with the current time. Set secs to true for appending seconds.
See also: DateString
Transpose
procedure Transpose(optional parameter list)
Transposes a data window, i.e. exchanges its rows and columns. Parameters:
window (String or Longint) The window’s name or window ID. Omit for
transposing the front window.
true

const true = 1,
This constant stands for the logical value of true.

Appendix A: Predefined functions, procedures and arrays A-69

Undo
procedure Undo;

Equivalent to selecting “Undo” from the “Edit” menu.

UpperString
procedure UpperString(var s: String);

Converts all characters of s to upper case. See@lgcstring

UseParameterSet
procedure UseParameterSet(optional parameter list);
Moves a parameter set appearing in the parameter set menu to the parameter window. Parameters:
set (String) The name of the set.
forAll (Boolean) True if the parameter set is one available for all functions.
Default: false
of Function (String) The function the parameter set belongs to. Omit for the current
function.
See also: AddParameterSet, SaveParameterSet, LoadParameterSet, DeleteParameterSet
Write

procedure Write(string or expressions

This procedure can have any reasonable number of strings or expressions as parameters. They will
written into the Results window.
Example:
Write('x value is: ', x);
Note: The format fields of standard Pascay (after numerical values ot after all other values) are
not supported. The number of digits after the decimal point fokrttee andwriteln procedures can
be specified by choosing “Preferences” from the File menu.Sdmtions(decimals ...) for
setting it from a program or function.
You can redirect the ouput ofirite to a text file using the routineSreateTextFile and
WriteToTextFile

Writeln
procedure Writeln(string or expressions

This procedure writes strings and numbers into the Results window. Then it moves the insertion mark t
a new line. It uses the same parameters as the procedure write.
Example:
The following writes the value of the top left data cell of the current data window into the results
window:

Writeln('data cell (1,1) = ',data[1,1]);
You can redirect the ouput ofritein to a text file using the routineSreateTextFile and
WriteToTextFile

WritelnString
procedure WritelnString(s:Str255);

External modules only. Writes the striigo the results window and starts a new line.

WriteNumber
procedure WriteNumber(r.extended);

External modules only. Writes the numbpdp the results window.

A-70 Appendix A: Predefined functions, procedures and arrays

Writelnt
procedure Writelnt(n:longint);

External modules only. Writes the integer numbay the results window.

WriteString
procedure WriteString(s:Str255);

External modules only. Writes the string s to the results window

WriteToTextFile
procedure WriteToTextFile(fleRefNum:longint);
Re-directs the output ®frite , Writeln , WriteNumber etc. to a file.
fleRefNum is the number returned loyeateTextFile ~ or O if you want to direct output to the results
window.
Call CloseTextFile to close the file when you are through

XColumn
function XColumn:longint;

Returns the column number of the x-column in the current data window. It returns zero if no x-column
was set and produces a run-time error if no data window is available.

XErrColumn
function XErrColumn:longint;

Returns the column number of the-column in the current data window. It returns zero if no
Ax-column was set and produces a run-time error if no data window is available.

YColumn
function YColumn:longint;

Returns the column number of the y-column in the current data window. It returns zero if no y-column
was set and produces a run-time error if no data window is available.

YErrColumn
function YErrColumn:longint;

Returns the column number of tiAg-column in the current data window. It returns zero if no
Ay-column was set and produces a run-time error if no data window is available.

Appendix A: Predefined functions, procedures and arrays A-71

Appendix B: About numbers

proFit uses three different formats for representing floating point numbers (or float):
* Real (or float): This format has smallest accuracy but requires minimum size. It is used in data
windows if you set the range of a column to “~1E30 ... 1E30".
» Double: This format has better accuracy but requires more size. It is used in data windows if you se
the range of a column to “~1E300 ... 1IE300".
» Extended (or native double): This is the format used for internal calculations. It has the same o
better accuracy as the double format.

The following list summarizes the features of each data type for the Power Macintosh and the 68|
version of pro Fit:

real double extended (native double)
Power Mac 68k

minimum negative number —3.4E38 —-1.8E308 —-1.8E308 —1.1E4932
maximum negative number -1.2E-38 | —2.2E-308 —2.2E-308 -1.7E-4932
minimum positive number 1.2E-38 2.2E308 2.2E308 1.7E-4932
maximum positive number 3.4E38 1.8E308 1.8E308 1.1E4932
decimal digits 7-8 15-16 15-16 19-20
size (bytes) 4 8 8 10/12%

T The FPU version uses 12 bytes, the non-FPU version 10.

Apart from the values in the list above, piibknows four other numbers: 0, +INF (infinity), -INF (-
infinity), NAN. The first three of them will do what you expect them to do. E.g. 1/0 = +INF, INF/3 =
INF etc. NAN (Not A Number) is the result of any computation that cannot be carried out, such as
sgrt(-1). The occurrence of NAN values in computations is reported as a run-time error.

Appendix C: File formats C-1

Appendix C: File formats

This appendix describes the file formats used byFprfor transferring data or drawings to and from
other applications.

Data

The default text format

To exchange data between piband other applications, text files are used. Usually, such files hold one
or more lines of text. Each line contains all values of a row separated by “tapsTle lines are
separated by “carriage returns” (). It is possible to use other characters instead of tabs and carria
returns (see below).

There are two standard formats of data text files produced IRtpro
The standardformatwith titlesis defined as follows:

1Stline: namel—- name2- name3 I
ondjine: 0.123 - 1.732 - 1.122 9
3rd fine: 2233 - 2125 2.126 |

The standardformatwithout titlesis very similar, but without the column titles line.

There is an interesting exception for data text files to be loaded into pro Fit. If the first line is a single sta
(*) pro Fit reads the second line as the column titles even if the file is loaded as being standard forme
without titles.

Lines are separated by carriage retufoddr)(13) or\r ' for C programmersgchr(13) for
Pascal programmers).

The first line with the column titles is optional. These names are separated by tabs (character code
here denoted as." —(char)(9) or \t 'for C programmerschr(9) for Pascal programmers). If
proFit reads a file without column titles, it sets the columns names to “Column 17, “Column 2" etc.

A typical Pascal program for writing such a file would be:

var out:text;

rewrite(text,'filename");
writeln(text,'x’,chr(9),'y");
writeln(text,'1.234',chr(9),'2.341");
writeln(text,'-1.244',chr(9),'3.412");

close(text);

Some applications produce data text files using other formats, or read data text files only when they ai
in special formats. préit provides options to read and write text files in other formats as well. The
details are given in the next section.

Appendix C: File formats C-3

Loading text files

For reading text files, choose Open... from the File menu, choose “Text Files” from the View pop-up
and select the file to be read. You will be prompted for the following information:

Loading TEXT File Format =00F—7"—=

3 Function or program file
@ Data file Format | With Titles 2 |

12| | Eancell |I.uad|

If you selectFunction or program file, the file is opened as a non-data text file and loaded into a
new function window.

If you selectData file, the file is opened as a data file and loaded into a data window. In this case you
can select either one of the standard formats or the custom format.

- If “Custom” format is not selected, pat uses an intelligent translation algorithm, which recognizes
most data file formats automatically. By selecting the “With Titles” format pro Fit interprets the first
line in the text file as the column titles.

- If “Custom” format is selected, you can specify the file format yourself.

Loading TEXT File Format =—0F=F7—

3 Function or program file

@ Data file Format | Custom 2|
[] Contains header lines

Copy to 'Info' field

Skip

[+ Contains column titles

Column delimiter Line terminator
@ [Tab]| ®[R D) %]
DY R 3|

| Show contents | 2] | cancel | |I_|md|

You can import any file where the data is stored as lines of text, each line containing the values of a rov
You can specify one or more characté&slimn delimiter) that separate individual values in a line

C-4 Appendix C: File formats

and the characterkifie terminator) that separate the individual lines. For both, column delimiter and
line terminator, pr&it gives you a selection of the most common combinations.

Furthermore, you can check
- Contains header linesfor skipping the first line(s) of the file, or to copy them into the info field
of the data window, and
- Contains column titlesif the file contains column titles in the first line following the optional
header lines.

Sometimes you do not exactly know how the text file is formatted. Therefore, you may want to have &
look at the starting lines of that file by clicki®how contents Pro Fit will show you the following
dialog box:

TEXT File to be Loaded

Line offset: 0O

*'l,'r'\-

first col%twvery |ooooooooooonguery |ooooooooooonguery o
1.000000=+0%% 1.000000=—5%tuery textyt1=2000%
2.000000=+0%% 1.000000=—9%t=hort 'y

2.000000=+0%%1 2. 14 1592=+0% ta'r

4 000000e+0%+ 0. 0000002+0% 1y

o.234000=+3% 1 tabowve is emptyhre

2

2

t

| »

.Z42400e+4%% 1. 234000e+3 44
L 424234e+B5 N tStart asdfasd Tk Ikj LIk Tk] Thj k] Ikj k]

LR R R R EE AR LR AL AR AR AR AR AR AR AR AT ARARAR AR ARARAR AR AN

oo tabulator, Sh: line feed, Se: carriage return

Line breaks at: [JLF{nd [CB ()

[Wrap long lines

Note that special characters such as a tabulator, line feed or carriage return are written in a doub
character form with a backslash (\) as the first character.

It is possible to display the text with differdohe breaks. If Wrap long lines is checked, the lines
will not be cut at the right border but wrapped to the next line.

Saving text files

You can also save data into text files in a custom format. To do this, choose Save as... from the Fil
menu for your data window and choose “Text File” from the Format pop-up. In the dialog box that
appears, select Custom format:

Appendix C: File formats C-5

Saving TEXT File Format

Format [Custom % |

[+ Optimize Size

[+ Write header lines:
i@ Copy text from "Info" field

3 Single line

[+ Write column titles

Column delimiter Line terminator
@ [Tab % @ | CR ($0D) =)
M A

2] | Cancell |Save|

This dialog box is very similar to the one for loading text files. Again, you can seleCothenn
delimiter and theLine terminator.

If Write header linesis checked, you have the option to either write a single first line with the text
specified in the edit field to the right, or to copy the whole text contained in the info field of the data
window as the header of the file.

If Write column titles is checked, the next line contains the column names separated by the column
delimiter.

Check Optimize sizeto write the numbers with as few characters as possible, without loosing
precision.

The native data format

If you want to exchange binary data with pro Fit, you can use pro Fit's native file format. A description
of this format is given in the technical note “pro Fit binary data file format” that comes with the pro Fit
package.

Drawings
proFit drawings can be saved as PICT files (file type ‘PICT’") or EPS files (file type ‘EPSF’). These
formats are used for export to other applications only and cannot be readHity pro

To save a drawing as a PICT file, bring the drawing window to the front and choose Save as... from th
File menu. In the dialog box that comes up, check the option “PICT”.

C-6 Appendix C: File formats

PICT files contain standard Macintosh PICT information and can be read by most drawing applications
The exact format of the PICT files created byFitaepends on the current PICT settings. See Chapter
13, “Preferences”, for more information on the different PICT settings.

Note that PICT files cannot contain QuickDraw GX shapes. Do not use the option “QuickDraw GX
shape” when saving PICT files.

EPS files are Encapsulated PostScript Files. They are essentially text files containing a standar
PostScript representation of the drawing. This representation is used by other applications tha
understand and work with PostScript. In addition to the PostScript text, a PICT representation of the
drawing is included. The file type of EPS files is ‘EPSF’. Hold down the option key while saving the
file to produce a file type of ‘TEXT'.

To save a drawing as a EPS file, bring the drawing window to the front and choose Save as... from th
File menu. In the dialog box that comes up, check the option “EPS File”.

Appendix C: File formats C-7

	Licence Agreeement
	Table of Contents
	1. Introduction
	How to read this manual
	Basic concepts
	Changes between versions 5.0 and 5.1

	2. Installation
	3. Getting started
	A first session
	Our data
	Starting pro Fit
	Entering the data
	Plotting the data
	A function to fit our data
	Previewing the data and the function
	Fitting

	Defining your own functions
	Writing programs

	4. Working with data
	Data editing
	The data window
	Selecting data

	Data types
	Entering data
	Data transformation
	Algebraic transformations
	User programs
	Data reduction
	Sorting data
	Transposing data
	Statistical analysis of a data set
	Fourier transforms
	FFT
	Inverse FFT

	Defining a data set to work on

	5. Working with functions
	Introduction
	Parameters
	Setting one of the parameters to be equal to x

	Using functions
	Optimization of functions
	Finding roots
	Roots
	Table of roots

	Finding minima and maxima
	Integration

	The Spline function

	6. The preview window
	Preview window tools
	Selecting data points with the arrow tool
	Changing the ranges of the preview
	Dragging a function curve
	Inspecting and editing coordinates
	Managing coordinate markers

	Tips and tricks
	Using the preview window during a fit
	Choosing initial values of function parameters

	7. Drawing and plotting
	The drawing window
	Drawing tools
	Coordinates, accuracy, and drawing info
	Coords window
	Drawing objects

	Drawing
	General drawing commands
	Objects created with the tools palette
	Text objects
	Rectangles and ellipses
	Lines and polygons
	Points

	Editing drawing objects
	Arrows
	Copying colors

	Saving a drawing as a PICT or EPS file
	Exporting pictures over the clipboard
	Exporting pictures using publishers
	Importing pictures
	Importing pictures by subscribing

	Plotting
	Axis scaling
	General plotting options
	Plotting a function
	Plotting a data set

	Graphs and legends
	Editing legends
	Editing graphs
	Coordinate axes
	Same as X1
	General
	Custom ticks

	Labels
	Lines
	Prefix

	Curves and data points
	Tabulate
	Error bars

	Frame
	Grid
	Graph styles
	Graph coordinates and zooming

	8. Fitting
	Mathematical Background
	Distribution functions and data weights
	The mean square deviations: Chi-squared
	Zero x-errors
	The "usual case": Chi-squared and zero x-errors
	Error analysis and confidence intervals
	Fitting algorithms
	Monte-Carlo algorithm
	Levenberg-Marquardt algorithm
	Partial derivatives
	Estimation of parameter errors

	Robust minimization algorithm
	Linear regression algorithms
	Polynomial fitting algorithm

	Goodness of fit
	Literature and suggested reading

	The fitting process
	General features
	Parameter limits
	Running a fit
	Inspecting the progress of a fit
	Error analysis and confidence intervals
	Fitting results
	Using the various fitting algorithms
	Levenberg-Marquardt algorithm
	Robust minimization algorithm
	Monte-Carlo algorithm
	Linear regression algorithm
	Polynomial fitting algorithm

	Fitting multiple functions and x-values
	Functions with multiple x-values
	Multiple functions with one x-value
	Multiple functions with multiple x-values

	General hints for fitting
	Starting parameters
	Redundancy oif parameters
	Errors of a data set

	9. Defining functions and programs
	Simple examples
	Defining functions
	Defining programs
	Shortcuts

	On-line help for programming
	The help menus
	Browsing functions and program definitions
	Finding the definition of a symbol

	Automatic macro recording
	Syntax of functions and program definitions
	Program definition syntax
	Example
	Loops
	while
	for
	repeat
	loop control statements: cycle and leave

	Optional parameter lists
	Aborting procedures
	Predefined constants, functions, procedures, and operators

	Function definition syntax
	Examples
	Alternative function syntax
	Special procedures in a function definition
	Check
	Initialize
	Derivatives
	First
	Last
	Summary

	General comments about programming
	Types
	Floating point, integer, boolean
	Complex numbers
	Strings and chars
	Arrays

	The compiler
	Debugging
	Comparision to standard Pascal
	External functions and programs

	Using pro Fit modules
	Saving functions and programs
	Loading functions and programs
	Removing functions and programs
	Loading modules automatically at startup
	Loading a set of modules

	10. Working with external modules
	Loading an external module
	Creating an external module
	Metrowerks CodeWarrior
	Think C or Symantec C++
	Think Pascal
	MPW C/C++ or Pascal

	Writing an external module
	Routines to be modified
	for functions and programs
	SetUp
	CleanUp

	for programs
	InitializeProg
	Run

	for functions
	InitializeFunc
	Func
	Derivatives
	First
	Check
	Last

	Predefined constants and types
	Global variables
	Procedures provided by pro Fit

	11. AppleScript
	Introduction
	Examples
	Batch processing

	When to program, when to script
	AppleScript commands and classes
	Required Suite
	pro Fit suite
	Classes of the pro Fit suite

	12. Printing
	Printing from pro Fit
	Printing with QuickDraw GX
	Printing with PostScript
	Printing at full printer resolution

	Printing a pro Fit drawing from another application
	PICT Options

	13. Preferences
	General
	Printing
	PICT Options
	Drawing
	Preview
	Interface
	Prefs file

	14. General features
	Getting help
	Help balloons
	pro Fit guide

	On-line evaluation of mathematical expressions
	File Info
	Find and Replace in text windows
	Shortcuts and other options

	Appendix A: Predefined functions, procedures, and arrays
	Functional groups
	Operators
	Mathematical functions and constants
	Data processing
	Accessing the data window
	Input and output
	Drawing
	Plotting in a graph
	Creating and accessing graphs
	Editing the current graph
	Setting default parameters
	Using other functions or programs
	Numerics on functions
	Fitting
	Using windows and documents
	String and character manipulation
	Miscellaneous auxiliary routines
	Advanced routines for external modules only

	Alphabetical list
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Y

	Appendix B: About numbers
	Appendix C: File formats
	Data
	data as text
	Loading text files
	Saving text files

	The native data format

	Drawings

