

pro Fit 6.1

User Manual

http://www.quansoft.com/

pro Fit © 1990-2007 by QuantumSoft
All rights in this product are reserved.

End User License Agreement

This is the license agreement between you and QuantumSoft covering your use of pro Fit and any other data, code or

information included in this package (the "Software"). Be sure to read it before using the Software.

By installing pro Fit or by obtaining access to and using the Software in any other way, you agree to be bound by the tems

of this agreement.

License terms:

1. The Software and its related documentation are provided "AS IS" and without warranty of any kind. QuantumSoft

disclaims all other warranties, expressed or implied, including, but not limited to, the implied warranties of merchantability

and fitness for a particular purpose. Under no circumstances shall QuantumSoft be liable for any incidental, special, or

consequential damages that result from the use or inability to use the Software or related documentation, even if

QuantumSoft has been advised of the possibility of such damages. In no event shall QuantumSoft's liability exceed the

license fee paid, if any.

2. Rights granted:

a) Use of the "trial" version of the Software is granted within the limits built-into the trial version application.

b) Use of the "full" version of the Software is granted for n users, where n is the number of users indicated in the purchase

acknowledgement for the registration key bought from QuantumSoft or from one of its resellers. An n-user licence is

deemed to be exceeded if the Software is installed on more than n computers. Exception: Right is granted within the single

user license to install the Software on two computers simultaneously if both said computers are regularly used by one

person only.

Within this agreement, "installed" on a computer means that the Software can be executed on said computer, either because

it is stored locally on said computer or accessible by said computer through a network.

3. Competent court and law:

This Agreement shall be governed by the laws of Switzerland and the competent court is in Zürich, Switzerland.

4. If, for any reason, any provision of this Agreement, or portion thereof, is found to be unenforceable under the applicable

law, that provision of the Agreement shall be enforced to the maximum extent permissible so as to effect the intent of the

parties, and the remainder of this Agreement shall continue in full force and effect.

5. QuantumSoft reserves the right to change this agreement at any time. Any changes will be announced at

www.quansoft.com.

6. Pre-release software: By using any beta version (pre-release version) of the Software, you acknowledge that you are

aware that such versions are for testing purposes only and that they often contain substantial errors that affect their

functionality or may damage data on or functionality of a computer. Pre-release versions of the Software should never be

used on computers containing data critical for your work.

QuantumSoft

Bühlstrasse 18

CH-8707 Uetikon am See

Switzerland

e-mail: profit@quansoft.com
www: http://www.quansoft.com

Copyright: pro Fit © QuantumSoft 1990-2007
 All rights reserved. No part of this publication or the program pro Fit may be

reproduced, transmitted, transcribed, stored in a retrieval system, or translated

into any language or computer language in any form or by any means,

electronic, mechanical, magnetic, optical, chemical, manual, biological, or

otherwise, without prior written permission of the publisher.

 The information in this user's guide is subject to change without notice. This

guide refers to version 6.1 of pro Fit.

Trademarks: Macintosh and LaserWriter, Finder, MacOS, MacOS X, PowerBook,

Quickdraw, Quartz, Power Macintosh, Macintosh Programmers Workshop

(MPW), and XCode are registered or non-registered trademarks of Apple

Computer, Inc. PostScript is a registered trademark of Adobe Systems

Incorporated. Think Pascal and Think C are registered trademarks of

Symantec Corp. Metrowerks and CodeWarrior trademark of Metrowerks Inc.

pro Fit is a trademark of QuantumSoft, Zürich

Customer Support: For information and customer support contact QuantumSoft at the following

address:

QuantumSoft

Bühlstrasse 18

 8707 Uetikon am See

 Switzerland

 e-mail: profit@quansoft.com

 web: http://www.quansoft.com/

4 Table of contents

Table of Contents
1 Introduction 9

A note on updates 10

How to read this manual 10

Basic concepts 11

Changes between versions 6.0 and 6.1 12

2 Installation 13

The installation procedure 13

3 Getting started 14

A first session 14

Our data 14

Starting pro Fit 14

Entering the data 14

Plotting the data 16

A function to fit our data 18

Fitting 20

Defining your own functions 23

Writing programs 25

4 Working with data 27

Data editing 27

The data window 27

Selecting data 28

Data types 28

Permanent transformations 30

Entering data 30

Data transformation 31

Algebraic transformations 31

User programs 33

Data reduction 33

Sorting data 34

Transposing data 35

Statistical analysis of a data set 35

Binning 37

Gridding 38

Fourier transforms 40

Inserting and deleting columns and rows 42

Defining a data set to work on 43

5 Working with functions 44

Editing in the parameter window 45

Using functions 46

Viewing function outputs 46

Calculating output values 47

Optimization of functions 47

Analyzing functions 48

The Spline function 50

 Table of contents 5

6 The Preview Window 52

Preview Window Appearance 54

Preview Window Tools 54

Selecting data points with the arrow tool 54

Changing the ranges of the preview 55

Dragging the function curve 55

Inspecting and editing coordinates 55

Managing coordinate markers 56

Tips and tricks 57

Using the preview window during a fit 57

Choosing initial values of function parameters 57

7 Drawing and Plotting 59

The drawing window 59

Drawing tools 60

Coordinates, accuracy and drawing info 60

Drawing objects 62

Drawing 62

General drawing commands 62

Objects created with the tools palette 64

Editing drawing objects 71

Exporting pictures 74

Importing pictures 79

Plotting 79

Plot types 79

Axis types 81

Plotting a function 82

Plotting a two-dimensional data set 87

Plotting a three-dimensional data set 89

Graphs and legends 90

Editing legends 90

Editing graphs 91

Graph coordinates and zooming 107

Shape properties 107

Drawing windows in dialog mode 107

8 Fitting 109

Mathematical background 109

Distribution functions and data weights 109

Error analysis and confidence intervals 113

Fitting algorithms 113

Goodness of fit 119

Literature and suggested reading 119

The fitting process 120

General features 120

Using the various fitting algorithms 126

Fitting multiple functions and x-values 128

General hints for fitting 128

6 Table of contents

Starting parameters 128

Redundancy of parameters 129

The errors of the data set 129

9 Defining functions and programs 132

Simple examples 133

Defining functions 133

Defining programs 137

A shortcut 139

Functions with more than one output (multi-valued functions) 140

Selective calculation of output values 142

Determining how multiple output values are rendered in the preview window
 143

On-line help for programming 144

The help menus 145

Browsing functions and programs 145

Finding the definition of a symbol 146

Automatic Macro Recording 147

Syntax of function and program definitions 148

Program definition syntax 148

Example 152

Loops 153

Optional parameter lists 154

Aborting procedures, functions and programs 155

Predefined constants, functions, procedures, and operators 156

Function definition syntax 157

General comments about programming 166

Bit operations 171

Data processing 171

Accessing the data window 172

Input and output 172

Drawing 173

Plotting in a graph 174

Creating and accessing graphs 175

Editing the current graph 176

Setting default parameters 176

Using other functions or programs 177

Numerics on functions 178

Fitting 178

Using Windows and Documents 179

String and character manipulation 180

Tags 180

Getting and Setting "Properties" of various pro Fit objects 181

Miscellaneous auxiliary routines 182

External functions and programs 184

Debugging Window 184

Using pro Fit plug-ins 185

Saving functions and programs 186

 Table of contents 7

Loading Plug-ins 186

Removing functions and programs from the menus 186

Loading plug-ins automatically on startup 186

Loading a set of plug-ins together with a new preferences file 187

Attaching programs 187

Working with control shapes 189

10 Working with plug-ins 195

Loading a plug-in 195

Creating a plug-in with a compiler 195

Writing an a plug-in with an external compiler 197

Routines to be modified 197

Predefined constants and types 201

Global variables 202

Procedures provided by pro Fit 202

11 Apple Script 204

Introduction 204

Examples 204

When to program, when to script 208

Apple Script methods and classes 208

12 Printing 213

Printing from pro Fit 213

Printing a pro Fit drawing from another application 213

13 Preferences 215

14 General features 216

Getting help 216

Help tags 216

On-line evaluation of mathematical expressions 216

File info 217

Find and Replace 219

Contextual menus 221

Shortcuts and other options 222

Appendix A: About numbers 225

Floating point numbers 225

Date and Time data 226

Appendix B: File formats 227

Data 227

The default text format 227

Importing text files 228

Saving text files 229

The native data format 230

Drawings 230

Image formats 231

Appendix C: Apple Script Cross Reference 233

8 Table of contents

Index 237

 Introduction 9

1 Introduction
pro Fit is an interactive tool for the investigation, analysis and representation of functions and data. It is

designed for users in science, research, engineering and education. The key features of pro Fit are:

• Spreadsheet and data management: Numerical and alpha-numerical data can be stored,

transformed and analyzed in spreadsheets. Predefined and user defined algorithms can be used for

data transformation.

• Analysis of mathematical functions: The values passed to mathematical functions and those

returned from them are managed in a parameter window that allows to easily determine which

input values must be used to calculate the output values of the function. The effects of any change

in the inputs are previewed interactively and in real time.

• Customized functions and algorithms: pro Fit provides a very powerful and simple Pascal-like

syntax for defining mathematical functions, data transformation algorithms, drawings, and general

macros, supporting floating point numbers, complex numbers, vectors, strings, and up to 4x4

matrices as general data types to be used in any mathematical expressions.

• Interactive parameter modeling and curve fitting: A key feature is pro Fit’s intuitive interface for

modeling and fitting data, offering the choice of several fitting algorithms and optional restriction

of parameter ranges. Fitting supports y- as well as x-errors and allows a Monte-Carlo error analysis

for fitted parameters. A parameter can also be fitted manually by dragging the function’s curve

with the mouse.

• Professional plotting. Data and functions can be plotted accurately and flexibly. Plots can have

multiple coordinate axes using linear, logarithmic, 1/x, and normal probability scalings, including

reverse scaling. Plotting types include scatter plots, line plots, skyline plots, histograms, contour

plots, color plots, and box plots. Interactive 3D models of function and data can be generated and

edited through the 3DplotterGL plug-in.

• Built-in drawing editor. A complete range of drawing tools allow flexible editing and annotation of

plots and presentations.

• Customizable graphical elements. Dash-patterns, line thicknesses, arrows, error bars, color schemes

and data point symbols can all be customized.

• Extensive graphical output possibilities. Pro Fit supports output and, in part, input for the following

graphic formats: PDF, PostScript™, EPS, PICT, high resolution bitmaps, PGF, TIF, GIF, JPEG.

• Scriptability and Recordability. You can record your actions automatically as a pro Fit program or

Apple Script for replaying them later.

• Externally compiled code: Import plug-ins of functions, algorithms, and other programs written in

your favorite programming language or in Apple Script.

• On-line evaluation of mathematical expressions: Wherever pro Fit expects numerical input (such as

in spreadsheets or dialog boxes) any mathematical expression can by entered

• Drawing from a program: pro Fit programs can directly draw in pro Fit’s drawing windows to

create drawings with high precision coordinates. These drawings are available for copying and

pasting into other applications and for high resolution printing. Specific drawing objects as buttons,

check boxes, and pop-up menus are supported to be used as interfaces for user-defined programs.

10 Introduction

• Macro programming: Write complete macros to perform common tasks such as opening and

closing document windows, fitting, importing and exporting files, etc.

• Debugging environment: A powerful debugger provides tools for developing and debugging

complex programs and functions.

• Extensive on-line help: An on-line help system provides answers, hints and explanations.

• Powerful plug-ins: Various plug-ins further increase pro Fit’s power, e.g. for contour plotting and

3D plotting of functions and data sets (3D plotting requires a Power Macintosh with OpenGL).

• And much more...: Such customizable data file import and export, services, multi-dimensional

functions, etc.

System Requirements:

pro Fit 6.1 has been developed for MacOS® 10.4 or better. Compatibility with earlier systems has not

been tested.

For users interested in running a version of pro Fit on older systems and machines, pro Fit 5.1 through

6.0 are still available upon request:

- pro Fit 5.1 is MC 680x0 based.

- pro Fit 5.5 is Power PC based and allows to save most of its documents in pro Fit 5.1 format.

- pro Fit 5.6 requires MacOS X 10.0.4 or later, or MacOS 9 with CarbonLib 1.3 or later.

- pro Fit 6.0 requires MacOS X 10.3 or later.

A note on updates

Development of pro Fit continues. To check for updates to your current version, visit QuantumSoft’s

web site at http://www.quansoft.com/.

You can also use pro Fit’s built-in mechanism for checking for updates. Choose “About pro Fit” from

the application menu and click the button “Check for Update”. pro Fit will contact our web servers and

tell you about any updates that you may want to download.

How to read this manual

This manual gives a full description of pro Fit. If you do not want to read it, you will still be able to

find your way through pro Fit: pro Fit has been designed to be used without a manual and most of its

features are self-explanatory. Extensive on-line help is provided. However, you will need to read the

manual to efficiently work with some of pro Fit’s most advanced features.

If you are already familiar with pro Fit 6.0, please refer to the last section of this chapter, "Changes

between versions 6.0 and 6.1". Then you may go directly to the chapters giving in-depth information

on the new features. If you prefer a beginner's introduction, you should continue with the section

"Getting started", which gives an overview on the most common features of pro Fit.

 Introduction 11

Basic concepts

pro Fit works with data, drawings, functions and programs and can be controlled by AppleScripts.

y:=a[1]*sin(x)

Functions

x
1.00
1.10
1.20

y
0.23
0.38
0.13

Data

Plots Drawings

A

pro Fit

Programs

for i:=1 to 10
data[i,1]:=i;

NewWindow(

AppleScripts

tell applicatio
open file da
run program
close windo

You can enter data into spreadsheet windows. Data can be transformed by built-in transformation

algorithms, (e.g. sort, transpose, filter, Fourier transform, or mathematical operations) or by user-

defined ones. Data can be text or numbers.

You can define your own data transforms by writing programs, which can access directly the data in

the spreadsheet window. pro Fit translates these programs into computer code, which can be executed

directly by the central processing unit(s) in your computer. You can automate many operations using

such programs or Apple Events and Apple Script.

Functions can be used for plotting, analysis and fitting. There are a number of built-in functions (such

as log, cos, exp, etc.). You can define your own functions using the same simple and powerful

definition language used to define other programs and macros.

Functions and programs can also be defined using an external compiler (plug-ins).

You can plot your functions and data sets in a drawing window. pro Fit offers most standard features

of a drawing program, and the appearance of all graphical elements is customizable. pro Fit generates

high resolution printer information for direct printing or for exporting data via the clipboard or

Drag&Drop.

12 Introduction

Changes between versions 6.0 and 6.1

pro Fit 6.1 brings various new features. A detailed list can be found in the folder “release notes for 6.1”

of the pro Fit distribution package. This is a list of the most important ones:

 Fitting, analysis • pro Fit now provides built-in support for multidimensional fitting, i.e. for

fitting a function with several x- and/or y-values to a data set of the

corresponding number of x- and y-columns. The command for

multidimensional fitting can be found under the Calc menu.

 • A new single command called Analysis combines the functionalities of

the former Analysis submenu and lets you calculate the values,

derivatives, integrals or roots of a function. The command is available in

a non-modal window, which is updated dynamically when you e.g.

change a function's parameter.

 Programming • pro Fit's built-in compiler now generates intel '386 code on intel-based

Macintosh models.

 Data, calculations • Selections in data windows can now be discontinuous, not only in

discontinuous rows, but in individual cells.

 • The cells in a data window can now be "masked". A masked cell is

invisible for all calculations.

 Installation 13

2 Installation

The installation procedure

Installation of pro Fit is very easy. Just copy the folder containing pro Fit and is associated files to your

hard disk.

Before installing pro Fit, read the “read me” file if any such file came with the package.

14 Getting started

3 Getting started

A first session

This chapter describes a typical pro Fit session. It shows how to enter new data, plot it, and how to fit a

mathematical function to it.

Our data

The world’s human population is growing rapidly. Table 3.1 shows the number of inhabitants of this

planet for the period after 1940

 Table 3.1 The world s population since 1940

year population in millions

1940 2200

1950 2500

1960 3000

1969 3600

1975 4000

1981 4400

1987 5000

1990 5300

Let us plot and analyze these figures.

Starting pro Fit

First install pro Fit on your computer, as described in the Chapter “Installation”. Then

• Double-click pro Fit.

pro Fit comes up with the following windows: The results window is used to output results of

various calculations. The parameters window (titled “Polynomial” after startup in the default

configuration) lists the input and return values of the current function and allows you to edit them.

The preview window shows a real-time preview of the current function and data set.

(Close these windows if you do not want them. When you need them again, choose their name from

the Windows menu.)

Entering the data

First, you must enter the numbers given in Table 3.1 into a data window. To do this, you have to open a

new data window.

 Getting started 15

1. Choose “New Data” from the File menu

An empty data window appears.

Data are arranged in horizontal rows and vertical columns. The topmost cell of each column shows the

name of the column (by default ‘Column 1’, ‘Column 2’, etc.). The cells below contain the data of each

column.

2. Click into the first empty cell of column 1 and enter the first year, 1940.

We fill the first column with the years and the second column with the population. The first year is

1940.

3. Click into the first cell of column 2 and enter the population in millions, 2200.

4. Repeat steps 2 and 3 to enter the other years and population figures in the
following rows.

Enter the values given in Table 3.1. Note that you can use the arrow keys, the tab and the return or

enter key to move from one cell to another.

5. Enter the column titles, year and population in millions .

Click into the titles ‘Column 1’ or ‘Column 2’ and enter the new names. Move the mouse to the

vertical separation line to the right of the second column title, click, and drag the separation line a

little bit to the right, so that you see the complete title. Your window should now look like this:

16 Getting started

6. Save the data by choosing “Save As...” from the File menu.

You are prompted to enter a name for your file.

Plotting the data

Now that we have entered the data, we can display it graphically.

1. Choose “Data Y(X)...” from the Plot menu

A dialog box appears Here you can enter the ranges of the plot, the columns to be plotted, and

more. In this introductory session we can use the settings as they are.

2. Click OK.

A drawing window appears, showing a graph of the data.

 Getting started 17

You can edit a drawing easily. For example, you can change most parts of the graph just by double-

clicking.

3. Double-click the vertical axis to change its range.

(Double-click the vertical axis itself, not the numbers to the left of it!) A dialog box called “Graph

Settings” appears, presenting the settings of the left y-axis:

18 Getting started

You can change a variety of parameters here. Often you will use the edit fields First and Last to

set the range of the axis. Another important field is the ‘Distance’ field that defines the distance

between major tick marks.

4. Enter 0 for First and 6000 for Last, then click OK.

The vertical axis of the graph now starts at 0 and ends at 6000.

Double-click other parts of the graph or its legend to change other attributes. Try double-clicking the

horizontal axis, the center of the plot, or the dot in the legend. You can also double-click any text in the

drawing to change it. Or you can choose any of the drawing tools to add lines, polygons, text, etc.

A function to fit our data

The growth of a population can often be described by an exponential function of the type

 Getting started 19

 p(t) = p(x0) exp
x x0
t0

 , (3.1)

where p(t) is the population at time t, p(xo) the population at an arbitrary start time xo, and to its

growth constant.

Let us try to investigate the validity of this formula for the world’s population. We want to find the set

of parameters for which equation (3.1) fits our data best.

1. Choose Exp from the Func menu

This brings the parameters window of the Exponential function to the front. It gives a description of

the built-in exponential function and its parameters:

The window is divided into three regions. The top region provides a short description of the selected

function and lets you load/save default parameter sets. The central part displays the input and output

values of the function, and lets you edit input values. The bottom region displays additional

information on the selected input or output value.

The function Exp looks like this:

 y = A exp
x x0
t0

 + const , (3.2)

which is essentially identical to equation (3.1). The parameter window also displays the default values

for the parameters (input values) A, xo, to and const. Starting from these parameters, pro Fit can find a

better set of parameters for describing our data. But first you must define which parameters you want

to fit, i. e. which parameters you want to vary in order to approximate the data with the Exponential

function.

As mentioned above, the starting time xo is arbitrary. Let us set it to 1940.

2. Click the number beside x0 in the parameters window and enter 1940.

This defines the parameter’s value.

Since xo is arbitrary, we do not want to fit it:

3. Uncheck “Use for fitting”.

(The check box “Use for fitting” can be found in the lower right area of the window.)

20 Getting started

The parameter name changes from bold face to plain text. This indicates that this parameter is

constant and will not be fitted.

(Shortcut: You can also toggle the option “Use for fitting” by simply clicking on a parameter’s

name.)

4. Click the parameter name const

We don’t want to fit this parameter, either. The parameter name is not bold anymore and the option

“Use for fitting” is unchecked now.

Fitting

1. Choose Fit... from the Calc menu

You can choose the data columns you want to fit:

The data column settings are already ok. This box gives you also the possibility of specifying errors for

the data points. For the moment, we don’t need to do this.

2. Click the button “Fit” to start fitting

 Getting started 21

Fitting is very fast. When it is completed, the fitted function is shown in the plot preview in the

lower half of the fitting window.

The fitted parameters appear in the results window:

22 Getting started

The fit yields –54.8 years for to and 8.99E-13 millions for A.

We can plot function (3.2) using the fitted parameters:

3. Choose Plot Function f(x)... from the Plot menu

A dialog box appears, displaying options for plotting the function:

We don’t need to change any of these options.

4. Click OK to draw the curve

The curve is drawn in the graph. You can now rearrange the items in the drawing window to obtain

a representation of data and theory like this one:

 Getting started 23

Defining your own functions

In the previous session you have fitted the built-in exponential function to your data. Fine. But what do

you do if your model is described by some mathematical equation that does not appear among the

built-in functions in the Func menu?

Define your own function! pro Fit can work with virtually all functions you can think of. Let us look at

an example. Imagine you want to analyze a function of the form

 y = a sin(x) ln(x) + b (3.3)

with the parameters a and b. To define this function:

• Choose New Function from the File menu.

This opens a new, empty function window.

• Enter the definition of your function in the new window.

Just enter:

 a[1]*sin(x)*ln(x) + a[2]

on the first line.

• Click the "To Menu" button in the function window, or choose “Compile & Add To
Menu” from the Customize menu.

This translates your function into computer code.

pro Fit looks at what you wrote and sees that you used the standard input x and the standard

parameter array (input values) a[1], a[2]. It therefore assumes that you want to define a new

function and interprets your text accordingly.

The new function is added to the Func menu, and the parameter window shows its default

parameters.

Your simple expression is replaced by a complete, syntactically correct function definition:

24 Getting started

 function User_Function;

 begin

 y := a[1]*sin(x)*ln(x) + a[2];

 end;

The first line defines the name of the function as it appears in the Func menu (User_Function is

the default proposed by pro Fit. You can change it to something like LogSine). Then, enclosed

between begin and end, there follows the definition of the function. In the third line the function is

calculated (from the variable x and the parameters a[1] and a[2]), and it is assigned (“:=”) to the

variable y.

Note: An alternative way to define the same function is:

 function logSine(ampl, offset:real);

 begin

 y := ampl*sin(x)*ln(x) + offset;

 end;

In this definition, the parameters (input values) of the function are defined in the function header. The

names used in the header are then used in the function body. This is the syntax used for standard

PASCAL functions. pro Fit uses the parameter names defined in the function header for displaying the

parameters in the parameters window.

After adding the function to pro Fit, you can change its parameters in the parameters window. You can

plot the function, use it for fitting, calculations, etc.

To plot it, you should first set its parameters to reasonable values, e.g. 1 and 0.5: Enter these values in

the Parameter window and choose “Plot Function...” from the Draw menu. In the dialog box that

comes up, select the plotting range (e.g. the x-axis from 0 to 5). If you already have an open drawing

window, you should check the option “Open New Window”, otherwise your curve will be drawn into

the existing graph.

Our sample function is not defined for x<=0. If you were to calculate it for a negative x-value, an error

would occur. How–ever, the function converges to y=a[2] for x=0. You may want to expand the

definition range of the function by defining y(x) = a[2] for all x 0. This can be done easily with the

following modification. (click the "To Menu" button or choose “Compile & Add to Menu” from the

Customize menu when you are finished.)

function logSine(ampl, offset: real);

begin

 if x <= 0

 then y := 0

 else y := ampl*sin(x)*ln(x);

 y := y+ offset;

end;

Your function could even become much more complicated than this. You can define functions that

contain more than one statement, as well as variables and procedures. You can use most elements of

the PASCAL programming language for defining functions.

 Getting started 25

The pro Fit package comes with more examples of function definitions. Look them up.

Writing programs

Besides defining functions for fitting and plotting, you can also define any data-generation and -

transformation algorithms using the same syntax.

Let us have a quick look at a small program that fills the first column of a data window with the powers

of two: 2, 4, 8, 16, etc. To define this program, again open a new function window (choose New Func-

tion from the File menu) and enter:

for i := 1 to nrRows do

 data[i,1] := 2 ** i;

SetColumnName(1,'Powers');

Then click the To Menu button. This time pro Fit recognizes that you are defining a program, not a

function. It adds the program to the Prog menu and replaces your text with the syntactically correct

version:

program User_Program;

var i:integer;

begin

 for i := 1 to nrRows do

 data[i,1] := 2 ** i;

 SetColumnName(1,'Powers');

end;

Note that this program starts with the keyword program, and not function. The rest of it follows

the same syntax as a function definition, with the exception that no “parameters” are used.

To run the program, open a new data window and choose “User_Program” from the Prog menu. The

first column of the data window will be filled with the desired values.

In this chapter, you have seen some of the most important features of pro Fit. For in-depth information

consult the following chapters of this manual.

��26 �������������������������

 Working with data 27

4 Working with data

Data editing

The data window

The data window is organized in horizontal rows and vertical columns. It can hold up to 16 millions

columns with up to 16 millions rows if enough memory is available.

To change the size of a data window (i.e. the number of rows and columns), click the resize field in the

top left corner of the window.

To bring the first cell of the first column into view, click the home field (to the right of the resize

field).

To insert or delete empty rows or columns, click one of the drag fields and drag the mouse.

To change the width of a column, click and drag the separation line between column titles.

Dragging down the info hook opens an empty area at the top of the data window. In this area you can

enter general information or comments about your data:

28 Working with data

When editing numbers in a data window, the arrow keys () move the selection mark to

neighboring data cells.

If you hold down the option key while pressing or , the insertion mark moves horizontally

within one cell.

The tab key moves the selection one column to the right. The carriage return or enter key moves the

selection to the cell below.

The little “in”, “out”, “x”, “y” symbols in the header of the first two columns tell that they will be

preselected as defaults to be associated to the “inputs” of functions (the “in” columns) or to be

associated with the “outputs” of functions (the “out” columns). The “x” and “y” columns are special

“in” and “out” columns that are per default associated with the current default input value of a function

(the “x” value) and the current default return value of a function (the “y” value). When using the

simplest functions of plotting and fitting you will most likely only work with “x” and “y” columns.

Selecting data

You can select a single cell by clicking it.

• To select a rectangular region of data cells, drag the mouse from the top left to the bottom right

cell, or click the top left cell and then click the bottom right cell while holding down the shift key.

• To select all cells in a row/column, click the row/column number field. To select several rows or

columns, click and drag over the row or column numbers you wish to select.

• To select all cells in a column starting from a certain row, hold down the option key while

clicking the topmost cell of the desired selection ,or click the column number field and then drag

the mouse down to the first row to be selected.

• To select all cells, choose Select All from the Edit menu.

You can create a discontinuous selection:

• To extend or modify a current selection to a discontinuous selection, click (and drag) into the cells

to be selected or deselected while holding down the command key.

• Note that a discontinuous selection can also be created by selecting data in the Preview window.

See also Chapter 6, “Preview Window”.

Data types

By default, each column of a data window contains numerical data, i.e. real-valued numbers. The

precision and range of these numbers can be:

• 10–300 to 10300 with approximately 12 significant digits (double precision)

• 10–38 to 1038 with approximately 6 significant digits (single precision)

See Appendix A for details on numeric representations.

By default, a new data window opens with either single or double precision columns. The default type

can be selected by choosing the command “Preferences” from the File menu. In the dialog box that

comes up, click the “General” icon. See Chapter 13 for details.

A column can also contain text, up to 255 arbitrary characters in each cell. To switch between text and

number formats, first select the column or columns you want to change and then choose Column

Format from the Calc menu. Alternatively, you can also double-click the column number of a column

you want to change.

 Working with data 29

After either of these actions, the Column format dialog box appears:

The popup at the top left contains the entries “Text”, “Number”, “Date & Time” and “Rel. Time”.

Choose Text if you want the selected columns to contain text, choose Numbers for numerical data. In

the latter case you can specify their Range (single or double precision) and define the format for

displaying numbers: select the number of digits to be displaced after the decimal point (decimals) from

the Decimals pop-up menu. If you check Scientific, all numbers will be shown in exponential

representation (i.e. 1.34e+3 for 1340).

You can also enter the column width in pixels in the corresponding edit field. A second way for

changing the width of a column is to click on the boundary line between column titles (the mouse

cursor will change to) and drag it to the desired position.

If you choose “Date & Time” as the column format, you can display a date and a time in a column.

Note: Use the “Date & Time” panel of the “Preferences...” command in the “pro Fit” menu to choose

the display format for date and time values.

About dates:

The Mac OS stores dates as the number of seconds since January 1, 1904. For the technically minded,

the date is stored as an integer number, 8 byte long.

pro Fit users the same convention as the Mac OS to store dates, but uses "double" floating point values

instead of integers. With this number representation, pro Fit can store and recognize dates with second

30 Working with data

precisions until up to 1015 (this corresponds more or less to a 6 byte long integer) seconds after January

1, 1904. .pro Fit can store dates with second-precision up to 31 million years in the future, and it can

store dates with day-of-the-week precision up to 3.1 billion years (3 x 1012) in the future.

However, the date-time conversion routines currently available in Mac OS 9 only support dates up to

29'940 AD for date-to-string conversions, date-calculations, etc. Up to this limit, pro Fit can store dates

with a precision of milliseconds, while it can store dates in the present with a precision of

approximately a microsecond.

If you choose “Rel. Time” as the column format, you can display a time difference.

Note: Use the “Date & Time” panel of the “Preferences...” command in the “File” menu to define how

many days fit in a year or a month.

pro Fit stores relative times as double precision floating point numbers, interpreted as a number of

seconds. This leads to a range of -2147483647 to 2147483647 centuries, which corresponds to floating

point numbers between -6.77680e+18 and 6.77680e+18

Permanent transformations

pro Fit data windows allow you to attach a permanent transformation to each individual column.

Whenever the data fields that are used in a permanent transformation as input data, the calculation is

restarted and the results are updated. If possible, the recalculation is done only for the rows that have

been changed. If you are defining permanent calculations using formulas that contain calls like 'data[,]',

pro Fit always recalculates all data in the corresponding column, because the input rows are not clearly

defined anymore.

Permanent calculations are created either from the Data Transform dialog (discussed below) or via the

Column Format dialog (discussed above). The modification of existing permanent calculations is done

via the Column Format dialog.

Note that recursive usage of column data is not allowed. E.g. if column 2 is automatically

(permanently) calculated from the contents of column1, then it is forbidden to define a permanent

calculation for column 1 that depends on column 2. If you are defining permanent calculations using

formulas that contain calls like 'data[,]', pro Fit cannot anymore be shure that there is no recursion.

Avoid the definition of such recursive calculations because they can lead to unpredicatable results!

Entering data

You can type data in the data window, copy and paste it , or drag it and drop it everywhere you want.

Instead of entering a number directly, you can enter a mathematical expression, e.g. “exp(1)” or

“6+sin(/4)”, or any predefined function or variable. See Chapter 9, “Defining functions and

programs” for more information about all the predefined keywords and functions you can use in

mathematical expressions.

You can also import data from text files. See the Appendix C, “File Formats” for detailed information.

 Working with data 31

Data transformation

pro Fit offers various methods for transforming data:

Numerical transformations, data reduction, sorting,

transposing, and Fourier transforms. In addition, you

can write programs that edit, manage, or create data in

any conceivable way (for more information on writing

such programs see Chapter 9, “Defining functions and

programs”).

All the commands for transforming data are found in

the Calc menu and they work on the data window

which is in front of all other windows.

Algebraic transformations

To make simple numerical transformations on your

data, choose Data Transform from the Calc menu.

The transformations you can carry out with this

command are of the form y = func(x). You can define

where the x-value comes from and where y has to be

stored. You can also choose what function you want to

use (note that some of these “functions” do not need an

x-value).

32 Working with data

The transformation is either by columns or on the current selection: Check Selected Rows only to only

include selected rows in the calculation. Choose Selected cells to work on the current selection. In

calculations on the current selection, each cell (x) in the selection is replaced by its transformed value

(y). In transformations by column, the cells of the x-column are transformed and stored in the cells of

the y-column. You can select the x- and y-columns from the pop-up menus. (In these menus empty

columns are marked with ‘ ’, columns already containing data with ‘•’, and text columns with ‘†’).

Check Make it permanent if you want the destination column to be updated automatically whenever

one of its input columns changes.

Five different groups of transformations are available:

• Simple arithmetic: All these transformations are of the type y = x op val, where op is one of the

operators +, -, * (multiplication), / (division), ^ (power), div (integer division), mod (modulus).

• Column arithmetic: These transformations are of the type y = x op col. Again, op can be any of

the operators mentioned above.

• Differential / Integral: These transformations return the discrete derivative or integral.

The derivative is calculated as the discrete derivative of a column d that is selected from the menu

to the right of the ‘d/dx’ popup field, in respect to the x-column. The result is stored in the y-

column according to the formula

yi =
di+1 di
xi+1 xi .

 Working with data 33

 The integral is calculated as the discrete integral of a column d over the x-column. d is again

selected from the menu to the right of the ‘ dx’ popup field. The result is stored in the y-column

according to the formula

 y j =
1

2
(di+1 + di)(xi+1 xi)

i=1

j 1

.

 Sometimes you may want to integrate over a single column d, or you may want to differentiate over

a single column d, according to one of the following equations:

 y j = di
i=1

j 1

 or yi = di+1 di
.

 You can do this by creating a column containing the numbers 1, 2, 3, ... (use the fill(n) command

described under ‘Various functions’ below) and using this column as your x-column.

• Various functions: Here you can select various simple transformation functions, such as sin(x),

exp(x), ln(x), etc. Among them, you can also find the currently selected function of the Func menu,

as well as the special functions fill(0), fill(1) and fill(n), which let you fill a column with the values

0 or 1 or with ascending values 1, 2, 3,... respectively.

• Formula: If you select this sort of transformation you are free to define any transformation

statement you like. Columns are labeled by the character 'c' followed by their column number. You

can use columns, constants, mathematical functions, or calls to user-defined functions in the Func

menu. You can use the symbols i or n for the row number and (if you have chosen “Selection

only”) j or m for the column number.

 Examples:

 x+sqrt(x) an expression
 tan(c10) tangent of values in column 10
 CovarMatrix(i,j) the covariance matrix of the last fit

 The size of such a transformation statement is limited to 255 characters.

If the result of a calculation is not defined, either because a data field used for the calculation is empty

or because there was an numerical error, the resulting data field is cleared.

User programs

pro Fit lets you define your own data transform programs or macros. These programs can perform data

transformations in the data window, create a graph in the drawing window, etc. They are found at the

end of the Misc menu.

Chapter 9, “Defining functions and programs” explains how to define such programs.

Data reduction

The command “Data Reduction” in the Calc menu offers several possibilities for data reduction, e.g. by

averaging over several data points or by skipping part of the points.

34 Working with data

• To keep every nth row and to remove all other rows, select Keep every.

• To remove every nth row and to keep all other rows, select Forget every.

• To replace groups of n consecutive cells in a column by their average, select Average over. This

option decreases the number of rows by a factor of n. (For example, if n=3, the values in the rows

1, 2, and 3 are averaged and the result is stored in row 1. The average of rows 4, 5, and 6 is then

stored in row 2 etc.)

• To replace every data value with the average of itself and its n-1 neighboring values in its column,

select Smooth over. Again, the average of n values is calculated. In contrast to ‘Average over’, the

number of rows is not reduced! (For example, if n=3, the value in row i is replaced by the average

over the values in rows i–1, i, and i+1).

To transform only the selected cells, check Selection only. In this case only the currently selected cells

(highlighted in the data window) are affected.

If the selection is discontinuous (whole rows only), the above algorithms are applied to each

continuous block of the selection, one after the other. The various discontinuous blocks are treated

separately and do not interact with each other.

To keep only the rows that are presently selected, check Keep selected rows. To remove all the

presently selected rows, check Remove selected rows.

Sorting data

To sort data, choose Sort... from the Calc menu:

 Working with data 35

Use the pop-up menu to select the column to be used as a reference for sorting. You can sort by

ascending or by descending values.

All the rows in the data window will be rearranged according to the new order in the sort column. To

order only the selected part of the data window, check Selection only.

Note that you can only sort by columns that contain numerical data. You cannot sort by columns that

contain text.

Transposing data

The command Transpose in the Calc menu exchanges the rows and columns in the active window. It

automatically resizes the data window to make sure that all the data fits into it.

Statistical analysis of a data set

The command Statistics... in the Calc menu brings up a window that displays statistical data of a one-
dimensional data set.

Note that this window is non modal, i.e. you can move it to the back by bringing any other window to
the front. It always displays statistics about data in the frontmost data window.

36 Working with data

The data set that will be analyzed by the statistical algorithms can either be a Single column (use the

popup menu to define it), All columns, or only the Selected Cells. If you specify a single column or all

columns, you can check Selected cells only to only use the data in the selected rows.

Click Results Window if you want the selected statistical parameters to be printed to the results

window.

Click New Data Window if you want the selected statistical parameters to be displayed in a new data

window. This option is particularly useful if you analyze data in several columns – in that case, the

statistical parameters of the individual columns are stored in separate rows of the resulting data

window.

The boxplot symbol to the right of the dialog box shows the median, lower and upper quartile and the

data points in the data set. Close and far outliers are drawn in color.

The following statistical values are calculated from a set of data x1 .. xN and are printed to the results

window and/or stored in a data window:

• The number of valid values N in the data set.

 Working with data 37

• The median of the sorted data set (central value for odd N or average of the two central values for

even N)

• The minimum (smallest value) and the maximum (largest value)

• The sum of all valid values S = xi
i=1

N

• The mean x =
S

N
=
1

N
xi

i=1

N

• The variance Var =
1

N 1
xi x ()

2

i=1

N

• The standard deviation = Var

• The mean absolute deviation ADev =
1

N
xi x

i=1

N

• The skewness Skew =
1

N

xi x

3

i=1

N

• The kurtosis Kurt =
1

N

xi x

4

i=1

N

3

The Skewness characterizes the degree of asymmetry of a distribution around its mean. The kurtosis

measures the relative “peakyness” or flatness of a distribution.

Binning

Binning is the process of putting data into bins. You define a data range that encloses all your data

values. This data range is divided into consecutive intervals, the “bins”. For each bin, the number of

data values that lie in its interval are counted.

Example

You analyze the height of 1000 people. You put all height values into a data window. Now you want

to plot a histogram, each histogram giving the number of people that have a height in a given 2 cm

interval. For this purpose, you choose "Binning" from the Calc menu, choose your data, define bins of

2 cm width, and run the command.

The binning command brings up the following dialog box:

38 Working with data

Under Input data, you specify the data to be binned. Bin parameters defines the location and

distribution of the bins. The bins can be distributed linearly, logarithmically, or according to any other

scaling type supported by pro Fit. For example, if you want equidistant bins, use linear scaling, if you

want to have one bin for each decade, use logarithmic scaling, etc.

Under Preview, the position of the input data values as well as the resulting bins are displayed.

When you click OK, the center and size of each bin is calculated and the results are displayed in a new

data window.

Gridding

Imagine you have a series of x- and y- values xi and yi and a z-value zi for each pair of values xi, yi.

The coordinates xi, yi are not necessarily on a grid. You now want to interpolate the z-values and

calculate them at a number of x- and y-values lying on a rectangular grid. This interpolation process is

called gridding.

To grid a data set, choose „Grid Data...“ from the Calc menu.

 Working with data 39

In the section Coordinates you can identify the X and Y-columns to be used, as well as the number of

steps the grid should have in these coordinates. In the section Magnitude you can select the z-column

to be used.

The Interpolation type defines the interpolation algorithm to be used for calculating z between the x-

and y-coordinates of the data points. pro Fit supports the following interpolation types:

• Automatic: This algorithm uses the "nearest neighbor" algorithm. If that fails, it uses the robust

"averaging" algorithm.

• Nearest neighbor (also called Natural Neighbors): This algorithm triangulates the space of x-

and y-coordinates, i.e. it creates a field of triangles that covers the convex hull of the points in

the x- and y-plane. When asked to return the z-value for a given x/y-coordinate, it first

determines the triangle that encloses this coordinate, and then returns the z-value from a linear

interpolation of the z-values at the corner points of the triangles. The code we use was derived

from work by Pavel Sakov and is used with his kind permission. The algorithm requires at least

3 data points that are non-degenerate and non-collinear in the x-y-plane.

• Modified Shepard: This algorithm calculates a local least squares fit of a quadratic surface

around each x/y/z data point. It requires at least 9 data points that are non-degenerate and non-

collinear in the x-y-plane.

• Quadratic: Similar to the nearest neighbor algorithm, this algorithm triangulates the space of

x- and y-coordinates and carries out a local interpolation in each triangle. The interpolation,

40 Working with data

however, is quadratic. The algorithm requires at least 3 data points that are non-degenerate and

non-collinear in the x-y-plane.

• HZDS: The Haber-Zeilfelder-Davydov-Seidel algorithm uses a technique described by J.

Haber, F. Zeilfelder, O.Davydov, H.P. Seidel in "Smooth approximation and rendering of large

scattered data sets", Proc. IEEE Visualization 2001, see http://www.math.uni-

mannheim.de/~lsmath4/paper/VIS2001.pdf.gz. It requires at leat 10 data points that are non-

degenerate and non-collinear in the x-y-plane.

• Averaging: Averaging is a crude interpolation algorithm based on an weighted average of the

z-values of all data points, with the weight defined by the square of the distance between the

desired coordinate and the each data point's coordinate in the x-y-plane. The major advantage

of this algorithm is that it works well even if you only have one data point.

The result is stored in a new data window.

Fourier transforms

pro Fit can calculate Fourier transforms of numerical data. A Fourier transform is a transformation of

numerical data from the “time domain” into the “frequency domain”, or vice versa.

If you have a one-dimensional set of real valued data points, hk (k = 0 .. N–1), the discrete Fourier

transform Hn of these points is given by

 Hn = hke
2 ikn /N

k= 0

N 1
, (1)

where n goes from –N/2 to N/2 (N is assumed to be even).The inverse Fourier transform is the inverse

operation: It allows the calculation of data hk in the time domain from data Hk in the frequency domain

by

 hk =
1

N
Hne

2 ikn /N

n= 0

N 1
. (2)

Note that hk as well as Hk can be complex values.

A classical interpretation of the Fourier transformation is the following:

A signal h(t) is sampled at a regular time interval t, resulting in a set of data points hk = h(t k).

The Fourier transform of this set of data corresponds to the frequency spectrum of the signal. Hn

corresponds to the amplitude of the signal at frequency n/(N t) .

Note that the maximum frequency of the frequency domain is fc = 1/(2 t), the Nyquist critical

frequency.

The Fourier transform and its inverse can be calculated with two commands in the submenu Fourier

Transform of the Calc menu: FFT and Inverse FFT. (“FFT” stands for “Fast Fourier Transform”, an

efficient algorithm for the calculation of the Fourier transform.)

These built-in algorithms assume that the data set hk of the time domain is real-valued and not

complex. In this case the frequency domain data set Hn is complex but we have Hn = H-n* i.e. the

values at positive frequency are the complex conjugate values at negative frequency. It is therefore

sufficient to calculate only the positive frequency spectrum of the Fourier transform.

 Working with data 41

Note: The built in Fourier transform works on real valued data in the time domain. To work in

complex data, use the plug-in “FFT” that comes with pro Fit.

To carry out a Fourier transformation, bring the data window with your data in the time domain to the

front and choose FFT from the Fourier Transform submenu:

Select the column that contains your time domain data and the columns for the real and imaginary parts

of your frequency domain data. If you check the box Calculate frequency, you must enter the time

interval between two points of the time domain (Data interval) and a column (Frequency) for the

frequency values of the frequency domain data.

Instead of calculating the real and imaginary parts in the frequency domain, you can also calculate their

absolute value and complex argument (check Amplitude and phase, instead of Real and imaginary

parts).

To calculate the inverse Fourier transform, select Inverse FFT from the Fourier transform submenu.

The dialog box that appears for this command is very similar to the dialog box we have just seen:

42 Working with data

Your input data are the complex values in the frequency domain. You select the columns for the real

and the imaginary parts, or, alternatively (when you select Amplitude and phase instead of Real and

imaginary parts), you select the columns for the absolute value and the complex argument of your

data.

The output column contains the real valued data points of the time domain.

If you want to calculate the time range (in seconds) for your output data, check Calculate time, enter

the frequency interval between consecutive data points of the frequency domain, and select a column

for the time values.

Note that if you have N points in the time domain, you obtain N/2+1 (complex) points in the frequency

domain and vice versa.

The FFT algorithm works only for N = 2m (where m is a positive integer), i.e. for N = 2, 4, 8, 16, ... If

the number of input data points is not a power of two, then the missing values to the next power of two

are assumed to be 0.

For further information on the subject of discrete Fourier transformations see e.g. W.H Press et al.,

Numerical Recipes, Cambridge University Press (Cambridge, 1989).

Inserting and deleting columns and rows

The Calc menu provides three commands for inserting and deleting rows and columns of a data

window.:

- Insert Rows/Columns...: This command inserts an arbitrary number of rows or columns. The

position where the rows/columns are inserted is given by the current selection. You can either

insert them after the current selection or at the beginning of the current selection.

 Working with data 43

- Delete Rows/Columns...: This command deletes the currently selected rows or columns.

- Resize Table...: This command allows you to resize a data window, i.e. to change ist number of

rows and columns. The rows/columns are inserted/deleted at the bottom and left of the data

window. As an alternative to choosing Resize Table from the Calc menu, you can click the resize

field at the top left of the data winodw.

Defining a data set to work on

Some of pro Fit’s commands access data in the data windows. If you have several data windows open

at the same time, pro Fit uses some rules for selecting the data window it works on:

• The transformation commands in the Calc menu work on the active data window (the window in

front of all other windows). If the active window is not a data window, these commands cannot be

used. (Example: the Data Transformation... command is only enabled when the front most window

is a data window.)

• Some other commands use the front most of all data windows. It does not matter if windows of

other kinds are in front. If the active window is not a data window, these commands look at all the

windows behind the active window and work on the first data window they find. This will be the

data window that is closest to the front. (Example: the Spline function uses the data window that is

closest to the front.)

• The commands for curve fitting and for plotting data display dialog boxes where you can choose

the data window from a pop-up menu. (Examples: Plot Data... and Nonlinear Fit...)

The data window containing the data used in a particular operation is called the current data window in

this manual. The current data window is either the foremost data window or the window you have

selected yourself.

When a data window is used as the current data window by a function or by some commands, four of

its columns can have a special meaning. They are the input and output columns. You can define

these columns using the pop-up menu that appears when you click the column number of a data

window while holding down the control or command key (click on the “index” header of the index

column to define the index column as one of the default columns).

For example, the ‘Spline’ function uses the data in the default input and output columns of the

foremost of all the data windows (other windows of a different kind, e.g. a drawing window, can be

active).

A small ‘in’, ‘out’ appears in the head of a column marks the default columns.

Note that the 'index' column can also become one of the default columns.

44 Working with functions

5 Working with functions
Functions in pro Fit take a set of numerical values (input values) and convert them into one or more

output values by applying a mathematical transformation.

All the possible inputs of a function can be divided into a standard x-value, and a number of (optional)

parameters that have their own individual names. The x-value is normally the default input value of the

function (the quantity that is varied on the horizontal axis when plotting the function), but it is possible

to also set one of the parameters to be the default input value.

A function can also have a set of outputs with their own individual names. Many functions have only

one output, and in such a case its name is very often y.

Functions can be plotted, used for curve-fitting, and analyzed in various ways. The functions that are

available in pro Fit are listed in the Func menu, and the function that is currently in use (the current

function) is checked. The inputs and outputs of the current function are always visible in a dedicated

window that carries the name of the current Function. We call this window the Parameters Window. It

can be closed, but the name Parameters always appears in the Window menu and can be selected to

make the parameters window visible or bring it to the front. Here is the parameters window of the

polynomial function

This window determines the behavior of the function. It specifies the default input and the default

output. In this case the default input is the standard one, x, but other inputs can be made to be the

default one by checking the “Default Input” check box, using the contextual menu that appears when

you control-click in the window, or using the hierarchical menu at the top of the Func menu (when the

output values are not displayed in the window, there is also an additional shortcut to do this: simply

click and hold on the name of the default output and select a different one in the menu that pops up).

When the standard x-value is used as the default input, it is possible to use some additional

optimizations that can make calculations of some functions faster. A list of all function outputs appears

when the disclosure triangle to the left of the word “Outputs” is clicked. For the polynomial function

there is only one output, but for other functions, like the Bessel functions, there can be many outputs.

Any of the outputs can be made to be the default one using the “Default Output” check box, the

contextual menu that appears when you control-click in the window, or the hierarchical menu at the top

of the Func menu.

The default input and the default output are used for all operations where a function must be used to

transform one value into another, like when a function is plotted in a two-dimensional graph, or when it

is used to fit a two-dimensional data set. Some other operations that require more than one input (like

 Working with functions 45

contour plotting) or provide more than one output (like tabulating a function) define their own sets of

inputs and outputs and the default input and output set in the parameter window are not used.

Note that whenever the default input is used for any operation outside of the parameter window, its

value is varied in that operation, and the value entered in the parameter window is ignored.

Depending on how the function is used, the inputs are often divided into two distinct populations. The

ones that are varied according to some pre-defined rule in order to obtain new output values, and the

ones that are only changed rarely to influence how the function calculates its outputs or that are

determined by some optimization procedure like curve fitting. One can describe in general the first set

as the independent variables of a function and the second set as the parameters of a function. Which

group of inputs must be considered as independent variables and which one must be considered as

parameters depends on the kind of operation that is performed using the function and can be changed.

But in the simplest, most usual case the default input value is x, the default output value is y, and there

is an additional set of inputs a1, a2, .. , an that are treated as parameters:

 y = f(x, a1, a2, .. , an) (1)

For the polynomial function whose parameter window appears above, the input deg sets the degree of

the polynomial, while const and a1 are parameters that can be determined, e.g., by matching the

polynomial function to an existing set of x and y values (curve fitting). Note that even though any input

can be made the default input and it can therefore be transformed into the default independent variable

in the above sense, the standard x value cannot be used as a parameter (in curve fitting for instance).

This limitation ensures that all pro Fit functions have a standard x-value that plays the same role

consistently, and it allows for a special treatment of the standard x-value that allows to optimize the

functions for execution speed.

Because the standard x-value is indeed most often used as an independent variable, while the rest of the

inputs most often play the role of parameters, we will often use the word parameters to loosely

describe all named input values that usually play the role of parameters as explained above. This

reflects the most common usage. However, keep in mind that any input can be in principle the default

input, and play the role of the independent variable.

An entry in the Func menu makes it possible to save the current inputs under various names to be used

later or as the default set for a function. The Parameter Sets submenu in the Func menu allows to save

this data for the current session, permanently (in the pro Fit preferences file), or even as an attachment

to a function definition file. Whenever pro Fit finds Parameter Sets that can be used for a function, it

makes them available in the Parameter Sets submenu.

pro Fit has a set of built-in functions, that you can use “as-is”, and gives you the possibility of defining

your own functions (there are also many external functions that are distributed with pro Fit and that are

ready-to-use). To define a new function, you can use the built in programming language (see Chapter

9, “Defining functions and programs”), or you can write your functions in your own compiler and

import them as plug-ins (see Chapter 10, “Working with plug-ins”).

Editing in the parameter window

Input values Click any value and edit it. Use tab or enter to move to the next value, use shift-tab or

shift-enter to move back. When an input is selected, the area at the bottom of the

46 Working with functions

window displays the full name of the input and some other properties: The interval of

allowed values (limits), if it is the default input, and its fitting mode.

Output values You cannot edit output values, but you can select them and move from one to the other

in the same way as you do for inputs. When an output is selected, the area at the bottom

of the window displays its full name and if it is the default output.

 copy, paste You can copy and paste input values between the parameters window and data or text

windows using the Copy, Cut, and Paste commands from the Edit menu. If you choose

Copy with no parameter value selected, all parameters are copied to the clipboard,

separated by tabulators. If you choose Paste with no parameter value selected, the text

on the clipboard is assumed to contain several values separated by spaces, tabs or

carriage returns, which are then used to change all parameter values. You can also

paste a list of tab-delimited value while a given input is selected to replace its value and

the following ones.

limits All inputs but the standard one (x) can have upper and lower limits, which are dis-

played in the footer of the Parameters window. These limits are used to constrain the

parameter during fitting and function optimization. To change a limit, select the input

and enter the limit in the corresponding field. To remove a limit, select the input and

clear its limit.

fitting mode To change the fitting mode of a parameter, check or uncheck the option “Use for

fitting” in the lower right part of the window. If you check this option, the parameter

will be varied during fitting and optimization, otherwise it will be kept fixed. The

fitting mode of a parameter can also be recognized by the typeface used for its name.

Parameters with names displayed in bold face will be varied during a fit. Parameters

displayed in normal type face are kept fixed during a fit. As an alternative to using the

“Use for fitting” checkbox, simply click the name of the parameter to toggle its fitting

mode.

If you define your own function, you must keep the predefined input x as the default

input if you want to use the procedure first. If you choose another input as the

default input, its value would be undefined in first. (See Chapter 9, “Defining

functions and programs”, for more details.). If you plan to use other inputs as the default

function input, do not use first.

Using functions

The following explains what you can do with functions. It does, however, not describe how to plot or

fit functions – these topics are covered in Chapter 8, “Fitting” and Chapter 7, “Drawing” – or how to

define a new function – a topic covered in Chapter 9.

Viewing function outputs

To see all the outputs of a function, click the triangle to the left of the word “Outputs” in the parameter

window. The list of output values will be updated automatically whenever an input value is modified.

 Working with functions 47

Calculating output values

The first, direct way to observe how a function’s output values change in response to a change in its

input values is to display all the outputs in the parameter window by clicking the disclosure triangle to

the left of the word “Outputs” in the parameters window.

You can also calculate the default output of the currently selected function for a given value of the

default input by choosing Analyze… from the Calc menu.

Choosing Tabulate Function(x)... allows you to create a table of the function’s output values in a data

window. You are prompted for the first and last value of the table and its step width. The input value

that is varied to generate the table is set in the dialog box that appears, and the table will contain all

output values.

If you enter a numerical value for Step, the function is calculated at equidistant x-values. If you enter

‘auto’ in the field ‘Step’, pro Fit chooses the x-values at which the function is calculated by using a

special algorithm that decreases the distance between calculated points wherever the function is

strongly bent. In this case only the default output value is calculated.

To tabulate the function at the values of the x–column of the current data window, enter ‘points’ in the

field ‘Step’. Also in this case only the default output value will be calculated.

Instead of ‘auto’ or ‘points’ you can enter a single ‘a’ or ‘p’.

Optimization of functions

The command Optimize from the Calc menu lets you find the maximum or minimum of a function by

varying any of the input values. To select which inputs must be varied to optimize the function, set

their fitting mode to active and use the check boxes in the dialog box that appears when choosing the

Optimize command..

48 Working with functions

If you check the active parameters, the algorithm will vary all parameters that are presently marked

as active (i.e. which in the parameters window have a bold face name and “use for fitting” checked).

The parameters are only varied within their limits, if such limits are specified.

If you check X, the algorithm will vary the function’s standard x input. Otherwise the x-value is kept

fixed at the given value.

The settings under precision affect the accuracy and speed of the calculation. If your function is slow,

you should first choose a low precision and, once you are satisfied with the results, choose a higher

precision.

Print full description controls the amount of information to appear in the results window.

Note that the command “Optimize” is designed for multi-dimensional optimization. If you only want to

vary the function’s x-value but not its parameters, you should use the faster command “Extrema”

described below.

Analyzing functions

The Analyze in the Calc menu brings up a window to calculate the roots, the extrema and the integral

of a function:

 Working with functions 49

With this tool you can do different types of analysis. A preview area to the right helps you to find the

answers you are looking for. While the analysis window stays open, you can modify the functions

parameters in the Parameters window, or even change the current function and observe the effects on

the results shown in the analysis window.

According to your selection of type of analysis, the result of the analysis is 'immediately' shown in the

preview area (i.e. the right half of the window), in the function display as well as in a results list. If

your function is too slow, you can switch off the preview check box.

The top part on the left side of the window lets you define the basic parameters for the desired analysis:

• Type of analysis: The type of analysis: Calculate a function value, find a root, a maximum or a

minimum, calculate an integral or a derivative.

• X-range from - to: This defines the range where to look for roots, minima, maxima, or the

integral boundaries.

• Number of Subintervals / Number of Iterations: To find a root, a minimum or a maximum,

the number of subintervals defines how many potential results can be found within the X-range.

When calculating an integral, the number of iterations defines (indirectly) the precision of the

integration

• Use fitted parameters: Check this if you want to use the parameters of the last fit of the

current function. Otherwise, the parameters from the parameter window are taken.

The middle part on the left side of the window lets you define a variation of either x or a function

parameter for output in the Results window or in a new Data window (i.e. without preview):

If you check Tabulate by varying, the analysis is repeated for a number of different x or parameter

values. The parameter popup menu lets you select the parameter to be varied.

• from - to: This defines the parameter variation range.

• step: This defines the size the parameters varyied step by step. When the type of analysis is to

calculate function values, you may define 'auto' or 'points' instead of a real number in this entry

field.

50 Working with functions

The lower part on the left side of the window lets you generate and output the desired analysis values:

• Click Results Window for doing the complete analysis and writing the results into the Results

window.

• Click New Data Window for doing the complete analysis and listing the results in a new Data

window.

To close the window, hit the button Done, click into the close control of the window, select the Close

command from the File menu, or press the 'Esc' key or 'Cmd-.'.

Note: If you want to find the extrema of a function by varying not only its x-value but also its

parameters (multi-dimensional optimization), use choose “Optimize” from the menu Calc. This

command is described above.

The Spline function

There is one special function in the list of predefined functions: the Spline function. The Spline

function is defined as a smooth cubic Spline curve going through all your data points. The Spline

function is useful for interpolation, especially when you do not have a mathematical model for your

data. This is a simple data set together with its Spline function.

To use the Spline function for a given data set:

1. Choose the Spline function from the Func menu.

2. Bring its parameters window to the front and click the “Spline Settings” button.

A dialog box appears:

 Working with functions 51

Check Current data set to use the x- and y-column of the front most data window. It will then use

the set of data points (xi, yi) in a data window, where the xi column and the yi column are identified

by small ‘x’ or ‘y’ labels in column head (change the default x- and y- columns by clicking the

header of a column while holding down the command key.).

Check Data Window to use another data set from a data window.

Check Function Parameters to use the parameters of a function as x- and y-values. This allows,

e.g., to fit a Spline function to some set of noisy points, in order to get a smooth guide-to-the-eyes

curve. When doing this, be careful not to choose too many points for Spline-definition. Other types

of functions that are useful to draw a smooth line through a set of noisy points are available as

external functions, as part of the pro Fit distribution package.

If you do not use the “Select Data” button in the parameters window, then the Spline

function will use the data in the front most data window (Select the appropriate x- and y-

column by clicking the desired column number while holding down the command key).

If you did use the “Select Data” button, but you close the data with the data set used by

Spline, then the Spline functions reverts back to using the data set in the front most data

window.

52 Preview Window

6 The Preview Window
There are generally two different approaches that are used by plotting applications for managing

graphs and the data used to generate them:

• The first one consists in maintaining a permanent link between the data you plot and the result of

the operation (the graph). In this approach whenever you edit the data you used for creating the

plot, the plot automatically changes to reflect the new values of the data set. Since the link between

data and plot needs to be maintained, it is in generally not possible to save data and graphs

separately, and they must be saved in the same document. In applications using this approach, the

graph is only a different “view” of the data, but does not lead an independent life.

• In the second approach, graphs and data are independent. Although a graph can be created from

data, and data can be recovered from a graph, the two documents lead separate lifes. After it has

been created, the graph does not know anymore about the origin of the data used to create it, and if

you modify that data, the graph remains untouched.

pro Fit uses the second approach while still providing a link between graphs and data that allows to

update a graph easily when the data changes. pro Fit has separate data documents and drawing

documents. From the data you can create graphs. From the graphs you can recover the data used to plot

them. Drawing and Data documents can be stored and maintained separately and don’t automatically

affect each other. In Chapter 7, “Drawing”, you will see how you can use the Draw menu to plot a

function and a data set, obtain graphical representations of your data and functions, and edit the graphs

to obtain the precise graph style you are looking for.

There is an ongoing discussion between the supporters of the first approach outlined above and the

supporters of the second approach used by pro Fit. A link between data and its graphical representation

is in fact also useful, and pro Fit provides it as a convenience, but a real-time, constantly updated

representation of data and the current function is provided in a dedicated window, the Preview

Window.

The preview window is a graphical representation of the current function and/or the current data set. It

gives you a graphical “view” of the function and the data set. Any change in the data set or in the

function is reflected in the preview window. You can even use the preview window to graphically edit

the function parameters or the data set.

Use the preview window to have a “quick look” at a function or a data set without actually plotting it.

For instance, you can let the Preview Window be a floating window and keep it in front while you load

many different data files. The preview window will automatically display all data contained in the

current x- and y- columns of the front window.

You can also use the preview window to view functions, graphically edit function parameters, select a

range of data points, compare a function to a data set, etc. Functions that have multiple outputs can

define groups of outputs that are displayed at the same time in the preview window if the default

output is part of the group. The other outputs in the same group are displayed in a lighter color.

Examples of this behavior are seen when using one of the built-in Peaks functions.

 Preview Window 53

Choose Preview from the Windows menu to see pro Fit’s Preview Window. This is how the Preview

Window looks like when it has its smallest size and is not working as a floating window.

On the left side of the Preview Window there are some check boxes that determine how the window

behaves and what it shows. The main part of the window is a rectangular view port that shows a

graphical representation of the current function and data set. On the right of the window there is a tool

palette with tools for changing the coordinates displayed by the view port, for graphically editing the

function and the data set, and for determining precise x- and y- coordinates.

Check Floating to make the preview window a “floating window” which always stays in front of all

document windows. Uncheck this option to transform it into a normal window, which you can be

hidden by other windows.

Check or uncheck Show data and Show function to choose what is shown in the window. When Show

data is checked, the window displays the current data set, i.e. the x- and y- columns of the current data

window. You can select the data set to be shown in the preview window by clicking the Data button or

by directly setting x- and y- columns in the data window

The Fitted params check box appears whenever a fit was successful, to give you the option of seeing a

plot of the function using the parameters obtained in the last fit, instead of seeing the function with the

parameters shown in the Parameters window.

Click the Redraw button if you want to let pro Fit redraw the complete function at maximum

resolution. pro Fit automatically decreases the resolution at which it draws the function if it notices that

the function is too slow. You can override this by clicking the Redraw button.

The Undo button appears only when the Preview Window is floating, and it allows you to undo the last

operation. When the Preview Window is not floating, you can undo the last operation as usual, by

choosing Undo from the Edit menu.

At the right end of the title bar there is a zoom box. Click it if you want to work with a larger window.

At the edges of the rectangular view port that displays the function and the data set are four edit-fields

giving the coordinate range to be displayed. You can edit the values to change the x- or y- range.

Between these edit-items there are check boxes labeled auto and log. Check them to let pro Fit

54 Preview Window

automatically recalculate the ranges based on the ranges of current function and data set, or to use

logarithmic scaling.

There is a permanent link between the preview window and the data or function it displays. The

preview window always displays an up-to-date representation of the current function and data set.

Change a coordinate in the data window, or add a data point, and the corresponding point will

automatically appear in the preview window. Change a function parameter and the representation of

the function in the preview window will be updated automatically. Modify a function definition and

add it to the menu once again, and the preview window will automatically display the new function.

If you select data points in the preview window, the corresponding rows are selected in the data

window. If you select some rows in the data window, the corresponding selection is shown in the

preview window. There is even the possibility of clicking and dragging data points in the preview

window. Doing so changes their coordinates in the data window.

Preview Window Appearance

You can set the color and appearance of data points, function curve, and markers by choosing

“Preferences...” from the File menu.

Preview Window Tools

To the right of the preview window there is a palette of five different tools. You can use them

to select data points and change their coordinates graphically, to change the ranges of the

preview window view port, to graphically change the value of the function parameters, and to

set coordinate markers.

Selecting data points with the arrow tool

Use the arrow tool to select data points. Simply click a data point to select it. Click and drag

to select a range of points with a selection rectangle. Hold down the shift key to add points to

the current selection, or to remove points from the current selection. If you hold down the

shift key while dragging a selection rectangle, the selection state of the data points contained

in the rectangle toggles between selected and not-selected. Hold down both shift and option

keys to always add the points inside the selection rectangle to the current selection.

You can set the color of the data points and the color used to mark selected data points using the

Preferences... command in the File menu. If you have a monochrome monitor, pro Fit will use a

dithered pattern to mark the selected points.

Whenever you select a data point in the preview window, the corresponding row is selected in the data

window. If you then choose Data Transform... from the Calc menu, you can perform calculations on

the data in the selected rows only.

 Preview Window 55

Selecting a data point in the preview window always selects the whole corresponding

row in the data window. If you select a range of data points in the preview and then

delete them, you will delete all data in the selected rows and not only in the current x-

and y-columns

Changing the ranges of the preview

You can change the ranges of the preview either by editing them manually, or by using the drag tool

or the zoom tool.

Click in the view port area with the drag tool and drag the area of the data set or function

curve displayed by the preview. The ranges of the preview will change accordingly. You start

dragging inside the view port, but you can go on dragging also outside, thus changing the

coordinates by a large amount.

Click in the view port area with the zoom tool (the lens) to zoom in and magnify the clicked

area. Hold down the option key while clicking to zoom out.

If you hold down the command key you can click and drag with the zoom tool, thus selecting the

precise area that will be displayed in the view port after zooming.

Dragging the function curve

Select the fitting tool and click in the view port. Hold down the mouse button while you move

the mouse. The curve of the function follows the position of the mouse while the selected

function parameter is adjusted accordingly.

When using the fitting tool, you must specify which parameter you want to vary. You can do this either

by clicking it in the parameter window, or by choosing its name from the small popup menu that

appears below the tools palette in the preview window. You can only vary one parameter at a time.

When you select the fitting tool and click into the preview, the selected parameter is varied until the

function curve goes through the point indicated by the mouse. pro Fit does this by numerically solving

the function f(a,x)=y, where a is the selected parameter and (x,y) is the point indicated by the fitting

tool. If it is mathematically not possible for the function to go through that point, no matter what the

value of the selected parameter is, then you will not be able to drag the function curve to that point.

The same applies if pro Fit fails to find numerically the correct value for the parameter.

If you use the fitting tool with a slow function, pro Fit will automatically reduce the resolution with

which the function is drawn, so the function will not appear to be smooth anymore. The resolution will

be increased again once you are finished dragging. Click the Redraw button to achieve the maximum

resolution.

Inspecting and editing coordinates

The last tool in the tools palette can be used to place coordinate markers on a given

data point, or on the function curve. Select the marker tool and click the curve or a data

point. pro Fit creates a new marker at the indicated position

While you move the marker tool around inside the view port of the drawing window, the corresponding

coordinates are displayed in the bottom left corner of the preview window.

56 Preview Window

When you create a new marker, it becomes the active marker. The active marker is always flashing on

and off.

You can create any number of markers. The first marker you create is the reference marker.

Subsequently created markers are auxiliary markers and are numbered starting from 1. Their number

appears when they are active (when they are flashing).

To set the color of the reference marker and of the auxiliary markers, choose Preferences... from the

File menu. If the reference marker cannot be distinguished by its color, pro Fit automatically draws it

larger.

Marker coordinates are displayed in the bottom left corner of the preview window. If there is more than

one marker, there can be two other coordinates displayed to the right of the marker coordinates. They

correspond to the distance between the reference marker and one of the other markers.

What the coordinates mean:

 x,y are the coordinates of x, x are the
distances from

No active markers around the reference marker the other marker
(if there is only one)

One active marker the active marker the reference marker

If a marker is active, its coordinates are displayed in editable fields. Edit any of these fields to set the

coordinate of the marker.

If the marker is a data marker and the preview window is big, the data window row number that

corresponds to the marked data point is also displayed. It is found above the x-coordinates and is

labeled “i = ”

The behavior when changing the text in the edit fields containing the marked coordinates

varies depending if the marker is on a data point or if it is on a function curve.

• If the marker is on a data point, the coordinates displayed in the edit field correspond to the

coordinates of that data point in the data window. Editing them changes the values in the data

window.

• If the marker is on a function curve, editing the coordinates sets the position of the marker. If you

edit the y-coordinates, pro Fit numerically inverts the function to find the corresponding x-value.

You can use this feature also as a shortcut to calculate the inverse of a function, or its root.

Coordinate markers can be accessed from pro Fit programs using the predefined functions

GetMarkedX, GetMarkedY, and GetMarkedCoords.

Managing coordinate markers

We already saw above how to create markers and look at their coordinates. There are a few other

simple operations that can be applied to markers.

 Preview Window 57

• Click a marker to make it active.

• Click a marker while holding down the option key to transform it into the reference marker

• Hit the delete key (backspace) while a marker is active to delete it.

• Click and drag a marker to move it to a new position.

• Move a function marker to the right or left border of the viewport to delete it.

To move a marker, click and drag it, or use the left and right arrow keys. A data marker jumps to the

next point to its left or its right, a function marker will move along the function curve. pro Fit makes

sure that you don’t move a marker outside the ranges of the viewport. You can override this by holding

down the option key while moving the marker with the arrow keys.

When you have markers on the function and you uncheck the show function checkbox, all of them are

deleted. The same applies to markers on data points when you uncheck the show data checkbox.

Uncheck and check the show function and/or show data checkboxes if you have many markers around

and want to get rid of all of them in one rapid move.

Data markers store their position as the number of the data point they mark. If you have data markers

around and you delete or add points to the data set, the data markers might move to a new data point. If

no new point corresponding to the old index is found for a given marker, that data marker is destroyed.

If you have function markers and you change the ranges of the display in such a way that their x-

coordinates are not visible anymore, those markers are destroyed.

Tips and tricks

Using the preview window during a fit

If Show function is checked during a fit, the function is redrawn from time to time to show how it

changes during the fit. This lets you monitor how well the fit converges. However, drawing the

function takes time. You should close the preview window or uncheck Show Function to obtain the

fastest fitting. The same applies to the preview that is built into the fitting dialog box.

The same thing happens when you use the Error Analysis feature. To perform error analysis, pro Fit

generates random sets of synthetic data points and fits the function to it. If Show Function is checked in

the preview window, you will see how the function curve varies in correspondence to the fitted

parameters.

See Chapter 8, “Fitting”, for more details on the fitting process and the Error Analysis algorithm.

Choosing initial values of function parameters

You can display the data you want to fit together with the fit-function in the preview window. You can

then use the fitting-tool to drag the function in such a way that it follows the data points as closely as

possible. Try using the fitting-tool with the various parameters you want to fit.

This is a kind of “hand fitting” that can be a very useful and fast way to set up a reasonable set of

starting parameters for a fit.

For special applications, you can also mark certain features of your data set using coordinate markers

and write a small program which reads the coordinates of these markers and uses them to calculate the

optimal initial values for the parameters of the current function.

58 Drawing and Plotting

 Drawing and Plotting 59

7 Drawing and Plotting
Drawing and plotting takes place in a drawing window. This window supports most features of

commonly used drawing applications.

We will first describe the drawing window and its general features.

The section “Drawing” discusses standard drawing objects and editing techniques.

The section “Plotting” is devoted to the plotting commands used to produce graphical representations

of your data and functions. It discusses how to manage graphs and how to edit them.

The drawing window

A drawing window always contains one single page. You can select its size and orientation by

choosing Page Setup... from the File menu. Before choosing Page Setup, make sure that you have set

up your printer.

A dotted rectangle frames the printable area of the page. Objects that lie outside this rectangle do not

print. See your printer’s manual for more information on printers and paper sizes.

You can view the page in a drawing window using various zoom factors, which you can set using a

popup menu in the drawing window tools palette.

60 Drawing and Plotting

Drawing tools

pro Fit provides various tools for editing drawings. These tools are collected in a “tool

box”, which is either placed in the left margin of a drawing window or in a separate

floating window.

To place the tools in a separate drawing window, choose “Drawing Tools” from the

Windows menu. The floating tools palette appears. To move the tools back to the

drawing window, simply close the floating window.

If you will never want to have drawing tools inside the drawing windows, you can

disable this option: Choose “Preferences” from the Files menu and check “Always use

floating toolbox” in the “Drawing” panel.

The upper part of the tools palette contains tools that are used to select, move or create

simple objects, such as rectangles and text. Then there is a tool that can be used to pick

up a color and apply it to another graphic object and a tool that lets you draw the

individual data points such as those used in graphs. A further tool is provided for

generating control shapes, such as buttons. The rest of the tools palette contains popup

menus for setting line styles and fill patterns, and for choosing the zooming factor of

the current view in the drawing window. The drawing window can be viewed at zoom

factors from 25% to 400%. To learn more about these tools, refer to the section

“Drawing” later in this chapter.

Coordinates, accuracy and drawing info

pro Fit uses floating point numbers to store the size and position of the various drawing objects. This

provides a positioning precision that is much more accurate than any output device (printer or

monitor). This is important because all drawing objects can also be created by a user-program. If you

write a program that produces graphical output, then you are likely to need a high precision coordinate

system. pro Fit gives you just this. Any drawing that you generate from a program is produced at very

high resolution and it will give optimal results when printed on any output device or when exported to

other applications as a picture or a PDF shape. The precise coordinates of any drawing objects can also

be viewed after it has been created using the pro Fit Coords window, which will be described later in

this chapter.

Although all coordinates are precise floating point numbers, apparent accuracy will obviously suffer

when drawing on a low resolution device, such as a normal monitor. In order to represent your drawing

at a certain resolution, determined by the zoom popup menu, pro Fit must round the floating point coor-

dinates describing a drawing object. In addition, fractional line widths and coordinates can be

represented by anti-aliasing effects. As an example, a line that is half-a-pixel wide will be drawn with a

light gray. These effects are produced by the systems’s Quartzdrawing engine, and they can be

optionally switched off.

When you draw something at a low resolution, pro Fit must figure out reasonable floating point

coordinates. It does this by “extrapolating” from the low resolution appearance in such a way that a

 Drawing and Plotting 61

high resolution view would give the same symmetry. For example, at the 100% view you can draw

three overlapping lines with thicknesses of 0.25, 0.5 and 1.0 pts. All three lines have exactly the same

appearance (e.g. they appear 1 pt thick). pro Fit sets up the floating point coordinates of the lines in

such a way that the thinner lines are centered on the 1 pt thick line.

Thanks to this interpretation you get the same result, at 100% view, if you draw a 1 pt line and then

make it 0.25 pt thick, or if you draw a 0.25 thick line directly. On the other hand, if you draw a 0.25 pt

thick line at 400% view, go to 100% view, and draw another 0.25 pt thick line on top of it, the two

lines will not overlap. This is because the first line was positioned with a much larger precision than

the first line. Use the Align submenu in the Draw menu to make sure that such lines really overlap, or

look at their coordinates using the Drawing Info window (see later).

Likewise, if you have two graphs or rectangles, set their size to be exactly equal, and overlap them at

100% view, one of their borders might be off by one pixel if their position is not exactly the same. This

is because roundoff errors must occur when calculating their rounded coordinates at 100% view. If you

set their position to be exactly equal (using the Align command or using the Drawing Info window),

the roundoff errors are exactly the same for the two objects, and they do overlap exactly in the 100%

view, too.

If you are concerned with precise positioning, e.g. when drawing overlapping lines or placing arrows

on the axes of a graph, always go to a larger zoom factor (e.g. 400%) or have a look at the underlying

floating point coordinates. You can do this using pro Fit’s Drawing Info window.

Choose “Coords” from the Windows menu to see this floating window.

Whenever a single drawing shape is selected, the Drawing Info window

shows its floating point coordinates, i.e. its size and its position in

coordinates that make sense for the particular shape which is currently

selected.

The first row of the Drawing Info window gives the absolute coordinates

on the paper, the second row gives the dimensions of the selected shape,

and the third row gives the angle of its diagonal and its length. The last row

shows the current coordinates of the mouse. The units used to display the

coordinates can be chosen using the “Preferences...” command.

All the coordinate fields are editable. Simply click a coordinate and enter a

different number to change the size or the position of the selected shape.

For example, you can set the precise length and orientation of a line by

entering the corresponding coordinates in the edit fields in the third row.

The Lens check box lets you open a small viewport with an enlarged

version of the region around the mouse.

62 Drawing and Plotting

Drawing objects

A drawing contains different objects. There are three different classes of objects in a drawing window:

• Objects that are created by choosing Plot Function or Plot Data from the Draw menu, such as a

graph and its associated legend.

• Objects that are created using the tools in the upper part of the tools palette, such as texts, lines and

rectangles.

• Objects that were created in another application and that are imported as pictures to pro Fit by

choosing Paste in the Edit menu, by importing a picture file or by dragging and dropping them in a

drawing window.

The first class of this list (graphs and legends) is discussed in the section “Plotting”. The other classes

(objects created by using the tools palette and imported pictures) are discussed in the following section.

Drawing

This section describes the general drawing commands and the use of the tools palette.

General drawing commands

General drawing commands apply to all types of drawing objects. These commands are probably

already known to you if you ever used any drawing application.

Here we shortly review them one by one.

To select an object in the drawing window:

1. Choose the arrow tool in the tools palette by clicking the box containing the arrow
symbol.

2. Click the object you want to select.

A selected object has four small black rectangles (selection handles) at the corners of

its enclosing rectangle.

To select multiple objects, you can either click on the desired objects while holding down the shift

key, or you click into an empty part and drag the mouse to generate a dotted selection rectangle: every

object enclosed by the rectangle will be selected. Click on an object while holding down the shift key

to deselect it.

To move an object:

1. Click the object and hold down the mouse button.

2. Drag.

If you hold down the shift key while dragging, movement is constrained to horizontal or vertical

directions. If you hold down the command key while dragging, movement is constrained to diagonal

(45°) directions.

In MacOS 7.5 and later, or if you have the Drag and Drop extension installed, you have a few more

options available:

 Drawing and Plotting 63

- If you hold down the option key while dragging, the object is duplicated, i.e. a copy of the original

is created at the destination instead of simply moving the original.

- You can drag one object from one drawing window to another. If you do this, a copy of the object

is created in the destination window.

- You can drag objects to any other application (supporting drag and drop), or to the Finder’s

desktop. In the latter case the Finder will produce a small picture clipping, which you will be able

to use later on, either by dragging it back to a pro Fit window, or by using it in another application.

- You can drag objects into the Trash to delete them.

To change the size (resize) of an object:

1. Select the object.

2. Click into one of the four black selection handles at its corners and drag.

While dragging, the new outline of the object is shown.

If you hold down the shift key when resizing, the proportions of the object are maintained, or the

height or width remains constant. If you hold down the option key when resizing, the horizontal and

vertical dimensions of the object become equal. If the object is a group of different objects, hold down

the command key to tell pro Fit to resize all of the objects of the group, regardless of their type

(normally pro Fit would not automatically resize texts or data points).

To rotate an object:

1. Select the object.

2. Choose the desired rotation from the Rotate submenu in the Draw menu.

All objects except graphs and legends can be rotated by angles multiple of 90˚. Lines, Polygons, and

Rectangles can be rotated by any angle, not just multiples of 90 degrees.

To flip an object, i.e. to exchange its left and right sides or its top and bottom:

1. Select the objects to be flipped.

2. Choose the desired operation from the Flip submenu in the Draw menu.

“Flip Horizontal” exchanges the left and right side of the objects. “Flip Vertical” turns it upside

down.

Note that you can only flip lines and polygons. It is not possible to flip graphs, legends, imported

pictures, or text. (Flip has no effect on rectangles and ovals).

To change the order in which several objects overlap:

1. Select the appropriate objects.

2. Choose the desired operation from the Send submenu in the Draw menu.

You can move objects one position forward or backward (commands “Forward” and “Backward”)

or you can bring them to the front or to the back of all other objects in the window (“To Front”, “To

Back”).

To align objects:

1. Select the objects to be aligned.

64 Drawing and Plotting

2. Choose the desired operation from the Align submenu.

Using this menu, you can align objects to each other, or distribute them regularly. If the objects are

a group of text objects, then every object retains its alignment when you edit it.

To group objects:1. Select all objects to be grouped.

2. Choose Group from the Draw menu.

Objects that can be double-clicked to change them (e.g. text objects, a graph, or its legend), can also be

double-clicked and changed while they are part of a group. You don’t have to ungroup them. If the

objects are text objects and you aligned them with the Align command before grouping them, their

alignment will be maintained when they are edited.Choose Ungroup from the Draw menu to ungroup a
group.

If you resize a group containing text objects or data point symbols, the proportions and

size of the text and data points remain the same. If you want to resize them

proportionally with the group, hold down the command key while resizing the group

Objects created with the tools palette

The upper part of the tools palette contains the drawing tools needed to create some of

the more simple drawing objects.

The lower part contains pop-up menus to select background patterns, line widths and

dashing, and arrows. Their use is explained in the section “Editing drawing objects”.

Text objects

 Use the text tool to create text objects:

1. Select the text tool from the tools palette.

2. Click inside the drawing window.

The text dialog box appears:

 Drawing and Plotting 65

Here you can enter your text and specify font, font size, text styles and the vertical position of each

character. pro Fit uses the shift-command key equivalents “H”, ”T”, and ”S” for the fonts Helvetica,

Times, and Symbol, respectively.

To offset a character vertically, use the controls to the right of the title Positions. To change the size of

a font, use the controls to the right of the title Size. To generate subscript and superscript characters,

hold down the command key and hit the up or down arrows – to go back, hold down the command and

shift key and hit the space bar.

You can also set the justification of a text object (right justified, left justified or centered) by using the

align commands in the Draw menu (left, right, center horizontally).

Instead of clicking the OK button, hit the Enter key or hold down the command key and hit the Return

key. (On a desktop keyboard, the Enter key is the large key at the right buttom of the keyboard. On a

laptop keyboard, hold down the fn key and hit the Return key.)

To enter symbol characters, such as , or , switch the keyborad to a layout that allows to enter

such characters. For this purpose, it is easiest to enable the Input Menu in the menu bar. This menu is

usually represented by an icon carrying a country flag or country specific character towards the right

end of the menu bar. If no such icon appears in you menu bar, choose "System Preferences..." from the

Apple menu and go to the International preferences pane. There, select the "Input Menu" tab and

activate, besides your customary keyboard layout, e.g. the Greek keyboard or the Character Palette.

After having done so, you can switch between keyboard layouts by hitting the spacebar while holding

down the command key.

66 Drawing and Plotting

pro Fit uses unicode for character representation. If you enter a unicode character that cannot be

handled by a given font, pro Fit uses fallback algorithms to find a font that does handle this character.

This will usually give the expected results when displaying and printing through the Quartz rendering

machine. If, however, you are relying on Quickdraw or Postscript output, we recommend that you

always explicitly switch to a font that carries the desired characters. In particular when using symbol

characters, such as , or , we recommend to switch to the Symbol font.

If your text object is part of a group object, it is not resized when the group is resized. If

you want to resize the text objects within a group, you must hold down the command

key while resizing the group.

Rectangles and ellipses

Rectangles and ellipses are created using the corresponding tools of the palette. Select

the appropriate tool, click the desired position of one corner of the rectangle (or the

enclosing rectangle for an ellipse) and then drag the mouse to the opposite corner.

Note that you can draw partially closed ellipses or circles. To do so, create a regular

ellipse or circle and double-click it or choose Shape Settings… from the Draw menu. In

the dialog box that appears, you can select the starting angle and arc length of the section

to be drawn.

Lines and polygons

Crating lines and polygons is easy as well. Select the appropriate tool, click the start of the line and

drag to its end. For polygons, click at the positions corresponding to the corner points of the polygon

(release the mouse when moving from one point to the next). Double click when finished.

By holding down the mouse button for a while when you select the polygon tool,

you can change the tool to the one for closed polygons

Hold down the shift key to constrain lines (or polygon sections) to horizontal, vertical, or diagonal

directions.

When drawing a polygon, hold down the command key and double-click to create a corner that

remains a corner even when the polygon is smoothed.

Lines and polygons can have arrows. To define at which ends of the line (polygon) arrows must be

drawn and to select the type and size of the arrow(s), use the arrow pop-up menu in the tools palette.

To smooth polygons:

1. Select the polygon you want to smooth.

2. Choose the appropriate smoothing method in the Smooth submenu in the Draw
menu.

 Drawing and Plotting 67

The two possibilities for smoothing can be seen in the figure below. You

can either select a standard Bézier curve that does not touch the corners

of the polygon, or you can select a smoothed curve that goes through all

the corners of the polygon.

An unsmoothed polygon and its two smoothed versions.

To reshape polygons:

1. Select the polygon you want to reshape.

2. Make sure it is in reshape mode.

If the selection marks of a polygon appear at the

corners of its enclosing rectangle, the polygon is not in

reshape mode. If the selection marks appear at its

corners it is in reshape mode:

3. If the polygon is not in reshape mode, choose Reshape from the Draw menu,
double-click it, or type the Enter key

This puts the polygon into reshape mode.

To move one of the corner points of a polygon, click and drag it. To remove one of the corner points,

click it while holding down the option key. To add a corner point, click a line of the polygon while

holding down the option key. Note that you can only add points to unsmoothed polygons.

Points

When plotting data, the data points are represented by special symbols. You can create such plot

symbols manually anywhere in a drawing window. This is useful for creating your own legends or for

exporting single point symbols to other applications (e.g. for figure captions).

Since the point symbols can assume a quite large size, they can also be used as parts of standard

drawings. Data point symbols can be edited using a particular set of tools that let you achieve effects

not easily achieved with other drawing objects (below you will find more details about editing data

point symbols).

To create a point object:

68 Drawing and Plotting

1. Choose the point tool from the tools palette.

Keep the mouse button down for a little while to select the symbol

that you want to use. A pop-up menu with a choice of data points

appears. Its top part contains a set of standard, predefined point

symbols. The last line contains user-defined symbols, and the

Other... field lets you define new point symbols.

2. Click the desired position within the drawing.

A new point symbol drawing object is created.

1. Choose the point tool from the tools palette.

To change the plot symbol of a point object, select it and choose the desired

symbol from the point style pop-up menu in the tools palette (or double-click it

to go directly to the custom points dialog box).

If the selected object is a graph or a legend, the new point style is applied to the

data plots contained in the graph. See the section ‘Graphs and legends’, later in

this chapter, for details.

On the right you see a selection of the data point styles offered by pro Fit.

Choose Other... from the point style menu to create your own data point symbols

using the “Custom Points” dialog box:

 Drawing and Plotting 69

pro Fit defines a data point symbol as a background shape and a foreground shape. With this dialog

box, you can design both of them. pro Fit offers some predefined simple shapes, and lets you edit any

closed polygon to define a new data point symbol. In the above example, both foreground and

background shapes are defined using a closed polygon. You can use this dialog box simply to change

the size of an existing point symbol, or to design more complicated point symbols.

Draw the foreground and background shapes in the preview area at the right of the dialog box. Use the

popup menu above it to set the magnification of the preview. The center of the preview area defines the

“hot spot” of the data point symbol. When plotting, the “hot spots” of data point symbols are

positioned on the correct mathematical coordinate.

Draw a closed polygon by dragging the polygon handles (the little circles or squares at the edges of the

polygon). To make your work easier, pro Fit lets you define a rotational symmetry and mirror

symmetries. Choosing 5 from the Symmetry popup menu (like in the above example) tells pro Fit to

draw the definition points at 5 positions 360/5 degree apart before connecting them with lines. Use the

Pts popup menu to set the number of definition points. Checking the H or V check boxes tells pro Fit

to draw the definition points at the 2 positions obtained by mirroring them at a horizontal or vertical

axis, respectively. You can achieve quite astonishing effects by combining these symmetry settings and

using only one or two definition points.

70 Drawing and Plotting

Hold down the shift key while dragging a polygon handle to constrain the dragging along radial

directions. Hold down the command key while dragging a polygon handle to resize and rotate the

whole polygon in one single move.

Choose a Symmetry of “1” and no mirror symmetries to draw a polygon free-hand.

Note that if you do this you can draw a polygon that is not centered inside the preview

area. This means that if you use such symbols for plotting, the symbols will not be

centered on the mathematical coordinates of the data points.

Click the Copy to Menu... button to add the point symbol you just defined to the point symbols menu

for later use.

The data point symbols you define are normally used when plotting (see the section “Plotting”, below,

for more details on this). However, you might also want to use them to achieve some special effect in a

drawing. For example, you can use a triangle or a rectangle to define a point, and you can rotate them

by any amount. You can’t do this that easily using the standard drawing tools. You can also define

closed polygons with any special symmetry. The data point symbols you define can then be used as

drawing objects in the drawing window (their size can be quite big). You will be able to resize them as

usual by dragging a selection handle, and you can always modify them by double clicking them.

Control shapes

Control shapes allow you to add buttons, check boxes, radio

buttons, text fields, popup menus and image wells to a

drawing window. These shapes can be accessed by a program

for generating complicated dialog boxes.

Chapter 9 of the manual, section “Attaching programs” tells

you more about how to use control shapes.

The following are the control shapes that you can used:

 Buttons: These are simple objects that hilite when clicked.

Checkboxes: They change their state when they are clicked.

Radio buttons: They are checked when they are clicked. They

usually come in groups. The program that manages the radio

buttons is responsible for un-checking all other radio buttons when

one radio button is clicked.

Text fields: These are objects that contain text. Generally, text

fields can be edited. If you don’t want the text field to be editable,

use a “Static text field”.

 Drawing and Plotting 71

Popup menus: These are objects that have several “values” which

can be selected by choosing them from a popup menu.

Wells: These shapes are usually used as background for other

objects, e.g. a graph. They consist of a white rectangle.

For a more detailed description on how to use control shapes, see Chapter 9 of the manual, section

“Attaching programs”.

Editing drawing objects

You can change many attributes of drawing objects, such as color, line thickness or

background pattern. To do this, first select the desired object(s). Then change the

attributes using the Fill, Pen, Dash, and Arrow popup menus.

 A fill pattern and a fill color can be specified for all drawing objects, except simple

lines. See Chapter 10, “Printing” for a list of limitations on patterns when printing with

PostScript.

A line color can be specified for all drawing objects except imported pictures.

72 Drawing and Plotting

The two Pen popup menus are used to select a thickness and a line color. The

dash pattern of a line is selected using the Dash popup menu. Choose Other...

from this menu to design your own dash pattern and add it to the Dash menu.

The line thickness and dash pattern can be specified for all objects containing

lines. If the selected object is a graph, the line styles of the axes, ticks, grid, and

frame will be changed. The color also applies to the labels. (More complex

options are available for the graph. See section ‘Graphs and legends’ in this

chapter.)

If the selected object is a legend, you can change the appearance of the curves

and data sets displayed in the legend and the corresponding graph. See the

section ‘Graphs and legends’, later in this chapter, for details.

Arrows of various size and shape can be added to polygons and lines using the Arrows pop-up menu.

Arrows can be added to all lines and polygons, smoothed as well as unsmoothed.

Choose Other... from the Arrows menu to design your own arrows and add your personal arrow styles

to the Arrow menu.

 Drawing and Plotting 73

You can define a different arrow to be used for the start and the end of a line, use half-sided arrows,

define various other types of line caps, etc.

Fill colors and line colors are set using the corresponding popup menus.

To copy the line color from one object to another

1. Click the color measuring tool ()in the tool palette.

2 Click the color you want to copy to pick it up.

The shape of the cursor changes and becomes a paint bucket.

3 Click the drawing object to which you want to transfer the color.

The line color of the clicked shape takes the color you picked with the color measuring tool.

To picked up a fill color for the target shape, instead of a line color, hold down

the shift key while clicking with the color measuring tool.

pro Fit stores the color that was measured with the color measuring tool inside

the standard color popup menu. This opens up an other, even more flexible

possibility to copy colors.

74 Drawing and Plotting

1. Click the color you want to copy with the color measuring tool.

2. Select an object and apply the measured color using the standard Fill-
or Line-color popup menus.

On black and white monitors pro Fit displays a simpler version of the color menus, with a more limited

choice of color. To see the standard color menu which is displayed on color monitors, hold down the

option key while clicking the popup menu symbol.

Exporting pictures

There are a number of ways to export pro Fit drawings:

• using the Copy or Cut commands in the edit menu,

• dragging them and dropping them to their destination,

• saving the whole drawing as a PICT, EPS, GIF, TIFF, PDF or PNG file.

When using the clipboard or drag-and-drop for exporting pictures, pro Fit generates PICT and PDF

data. PICT data is compatible with nearly all MacOS applications but it often does not yield optimum

results when rendering a picture on screen or for printing. PDF data provides much better quality and

portability but is not accepted by all applications. Some applications, such as Keynote version 1, accept

PDF via clipboard but not via drag and drop, i.e. you should use copy and paste for placing pro Fit

graphics into Keynote.

In pro Fit’s preferences dialog, which you can bring up by choosing Preferences... from the pro Fit

menu, there is a section titled “Copy”. In this section, you can define what image data format (PICT

and/or PDF) pro Fit is to generate when you copy items form a drawing menu. You can also define the

depth and resolution of the PICT data to be exported.

Note: Starting from pro Fit 6.1, PICT data is exported as bitmap only because pro Fit does not natively

use Quickdraw anymore.

Exporting file formats

To save a drawing as a picture to be exported to other programs choose Export... from the File menu

and select the desired file format from the Format popup.

 Drawing and Plotting 75

Depending on the file type you choose, you can specify various formatting options by hitting the

Options button.

PDF files

Under MacOS X, PDF is the preferred graphics interchange format. It contains substantially resolution-

independent vector information that will provide good results when rendered on screen or printed.

You can set the following PDF specific options by hitting the Options button:

Under Page size, you select if the bounds of the image are to correspond to the bounds of the shapes

included in the image, or if the paper size of the current drawing window is to be used. Under Shapes

76 Drawing and Plotting

to include, you specify if all shapes or only the currently selected shapes are to be included in the pdf

file.

The option Optimize picture alignment for allows you to fine-tine the position of any bitmapped

pictures that you may have in the graph. Pro Fit will endeavor to place the pixels of the bitmap in

alignment with the pixels of a destination medium having the given resolution. Use this option if you

find the pictures in the pdf file to look blurred and un-sharp. Set the value to 0 for suppressing picture

alignment.

EPS files

To save a drawing as an Encapsulated PostScript (EPS) File, choose EPS file from the format menu of

the file saving dialog box.

You can set the following EPS specific options by hitting the Options button:

The popup Image format lets you specify the encoding to be used for images embedded in the

drawing file. “Embedded images” in this sense are any type of graphical elements imported from other

applications, as well as from some plug-ins, such as 3DplotterGL. Generally, you should use RLE

encoding for line graphics because it is a lossless compression encoding optimized for this type of

 Drawing and Plotting 77

graphics, while you should use JPEG encoding for photos or other images that don’t have sharp edges

and homogeneous areas. If you use JPEG encoding, you can specify the degree of compression using

the Compression popup. The field Image Resolution specifies the resolution with which the

embedded images should be stored because pro Fit will store all embedded images as bitmaps.

Use the popup Include to specify if all the shapes or only the currently selected shapes are to be

included in the eps file.

Under Page size, you select if the bounds of the image are to correspond to the bounds of the shapes

included in the image, or if the paper size of the current drawing window is to be used.

The size of EPS files created in this way is kept as small as possible. This small size is useful when you

want to transmit your pictures over e-mail to a publisher. However, keeping a small size introduces

some limitations on the number of text formatting options you can use. If a certain text-formatting

option is not supported by the PostScript font you plan to use, like “Outline” or “Shadow”, or

“Underline”, then these text formats are ignored when storing your document as an EPS file.

Typographical formatting styles like Bold Face or Italic are nearly always available in all common

PostScript fonts.

There is another point involved in keeping the size of EPS files small, and it is again connected to

fonts. pro Fit does include information on the fonts used in your document, but does not include the

fonts themselves. So make sure that you use fonts that are available to the application to which the

pro Fit EPS files are imported.

A pro Fit EPS file contains a PostScript representation of the drawing for printing, and a picture to

display on screen (called the template). The format of the picture template that is included in EPS files

can be selected using the PICT options panel of the Preferences dialog box (File menu). All PICT

options can be used except the “embedded PostScript” option (which will automatically be replaced by

“normal”). It is advisable to use the high resolution bitmaps only if the high resolution information is

really needed. Otherwise use a normal picture or a low resolution bitmap because they require less

memory. PICT Options are discussed in Chapter 12, “Printing”.

Note: pro Fit generates Postscript level 2 EPS files. Such files are incompatible with old devices

requiring Postscript level 1, such as some of the first printers of the LaserWriter family.

A drawing saved as an EPS file cannot be opened by pro Fit anymore. And PICT files

will be opened as a single picture shape.

To be able to modify it later, save a copy in the pro Fit format!

GIF, TIFF, JPEG and PNG files

To save a drawing as a Graphics Interchange Format (GIF) image, as a Joint Photographic Experts

Group (JPEG) image, or as a PNG or TIFF image, choose the corresponding option from the format

menu. All these file formats generate bitmap based images of your drawing. They are therefore

resolution dependent, but they are compatible with a wide range of applications and platforms. For

each of these formats, you can specify some formatting settings by hitting the Options dialog. The

following shows an example of the settings available for GIF files, but the settings for the other bimap

based interchange formats are similar:

78 Drawing and Plotting

You can specify the following options:

Color depth: The maximum number of different colors in the image.

Background color: The background color of the image. In most image formats, this color is

interpreted to be transparent

Resolution: Most bitmapped image formats allow you to define a resolution. Set this to 72

dpi if you inted to use the image for screen rendering only. If you inted to use it

for printing, use a higher resolution. Higher resolutions will lead to larger files.

Compression: Some image formats provide compression algorithms for reducing file size.

Note, however, that these compression algorithms may be lossy, in particular if

a high degree of compression is used, e.g. in a jpeg file.

Encoding sequence: If this option is checked, the data is stored in such a way that the image is

rendered with increasing quality when being accessed through a low bandwidth

network. If this option is unchecked, the image is stored row by row, which will

lead to a poor image build-up when the image is accessed through a low

bandwidth network. This option is not available for all image formats.

Anti-aliasing: If you check this option, pro Fit will smooth the edges of the image by using

anti-aliasing technologies. It will render a two times enlarged drawing and then

reduce the resulting bitmap by a factor of 2

Shape selection: If checked, only the currently selected shapes will appear in the image.

Otherwise, all shapes in the drawing window will be rendered

Check “Save options permanently” for saving the selected options as a default setting for the given

image format.

 Drawing and Plotting 79

Importing pictures

pro Fit can import the following image formats: PICT (Quickdraw Picture), PDF, PNG, TIFF, GIF and

JPEG.

There are three ways of importing pictures: over the clipboard (by choosing Paste in the Edit menu),

by dragging the file or image from the Finder or another application into pro Fit drawing window, or

by choosing the Import command from the File menu to open a supported image file type.

Note that pro Fit imports pictures ‘as a whole’ and does not take them apart. If you use a drawing

application to create a line and a rectangle and paste these objects together into pro Fit, they are

interpreted as one picture, not as a line and a rectangle.

An imported picture can be resized or rotated, but it cannot be edited in any other way. Rotating and

resizing may not work with imported pictures if they contain any non-standard information, such as

PostScript commands.

To obtain size and resolution information of an imported image, double-click it. The dialog box that

comes up also allows you to set or reset the size of the picture.

Plotting

pro Fit generates graphical representations of functions and data sets inside drawing objects called

graphs.

A graph consists of two or more axes and one or more plots. Each plot represents a set of plotted data

or a plotted function.

Plot types

Pro Fit supports several plot types:

Two-dimensional function plots consist of a single line. They can be used for plotting one output value

of a function versus one input value. To plot a two-dimensional function plot, use the Plot Function

command from the Draw menu.

Contour plots consist of a series of contour lines and/or a color-encoded pixels representing a

function’s output value versus two of the function’s input values or a set of data points having x-, y-

and z-coordinates. To plot a function contour plot, choose one of the commands from the Contour Plot

submenu of the Draw menu.

80 Drawing and Plotting

Scatter plots represent sets of data points having x- and y-coordinates. The data points can be marked

by plot symbols and/or be connected by lines. To draw a scatter plot, choose Scatter Plot from the

Draw menu and select the option “Scatter Plot” from the Plot Type pop-up.

In a bar chart, two-dimensional data points are represented by horizontal or vertical bars. To generate a

bar chart, choose Scatter Plot from the draw menu and select the option “Horizontal Bar Chart” or

“Vertical Bar Chart” from the Plot Type pop-up.

In a skyline plot, two-dimensional data points are represented by horizontal or vertical lines

interconnected by vertical or horizontal connecting lines, giving the impression of a “skyline”. To

generate a skyline plot, choose Scatter Plot from the draw menu and select the option “Horizontal

Skyline” or “Vertical Skyline” from the Plot Type pop-up.

 Drawing and Plotting 81

A box plot represents the statistical properties of one or more data set. Each data set is represented by a

box, the box indicating the minimum, maximum, lower quartile, upper quartile and median of the data

set. Optionally, the box can also show some or all data points in the data set. To generate a boxplot,

choose Box Plot from the draw menu.

Axis types

The second important part of a graph are, besides the plots, its axes. A graph can have several axes.

All of pro Fit’s built-in graph types have x- and y-axes. The x-axes extend, by definition, horizontally,

while the y-axes extend vertically. The z-axes are not directly visible in the drawing plane. They define

the scaling, color scheme and position of contour lines for z-values in color plots and contour plots.

A graph always maintains two special coordinate axes, which can never be deleted. This are the main

coordinate axes, and are called X1, Y1 and Z1. The other axes are called X2, X3, Y2, Y3, Z2, Z3 and

so on.

The axes can have linear-scaling, logarithmic-scaling, 1/x-scaling, or probability-scaling.

0

4

8

lin
ea
r

The linear scaling type is the standard scaling type. It indicates that there is a linear

relationship between the coordinates of the graph and your paper.

82 Drawing and Plotting

100

101

102
lo
ga
rit
hm
ic

 A logarithmic scaling indicates that there is a logarithmic relationship between the

coordinates of the graph and your paper – it expands the lower end of an axis and

compresses its upper end. The min and max values for logarithmic axes must both be

positive.

1

2

10

1
/x

The 1/x scaling type can be used to plot a function whose y-value is expected to be

proportional to 1/x. If you plot such a function on a “1/x” scaled x-axis, the function is

a straight line. The min and max values for 1/x-axes must both have the same sign.

0.01
0.10

0.50
0.90
0.99

pr
ob
ab
ili
ty

The probability scaling type can be used for plotting normally distributed data – or, to

be more accurate – their integral. If you have a sample of sand, and you determined the

percentage of grains having a diameter smaller than x, plot this percentage as a

function of x using probability-scaling for the y-axis. If the size of the grains is

normally distributed, your data points will lie on a straight line.

With pro Fit, you can plot on any one of the coordinate axes contained in a graph, you can add new

coordinate axes, and you can change their characteristics.

The next section discusses the general options that are always available when plotting. Then we discuss

the procedures for plotting functions and data sets, and finally we describe how to edit and use existing

graphs.

Plotting a function

To plot the output value of a function versus one of its input values:

1. Choose the function you want to plot from the Func menu.

2. Set its parameters in the parameters window.

3. Choose Function f(x)... from the Plot menu.

The Plot Function dialog box appears:

 Drawing and Plotting 83

If Use fitted parameters is checked, the function is plotted using the parameter values calculated in

the last fit. If Use fitted parameters is not checked, the parameter values in the parameters window are

used.

The controls under the heading Coordinates define the settings for the x-axies:

• The popups titled X-axis and Scaling are used to define the x-axis of the graph to be used as well
as ist scaling type.

• The edit fields titled from and to it define the range of the x-axis.

• If you are using linear x-axis scaling, the entry in the field X-Step determines the distance (step
width) between consecutive calculated x-values. If you are using any other x-axis scaling, the field
has the name # X and determines the number of x-values that will be calculated to plot the
function. The default value for step is “auto”. This invokes a specially designed plotting algorithm
that automatically selects the x-values at which the function is calculated. If the curve representing
the function is strongly bent in a given interval, then the number of points that are required for

84 Drawing and Plotting

drawing the function is large. On the other hand, if the function is a straight line, the number of
points needed is smaller. The following figure illustrates this:

Note that the number of calculated points is optimized for the range a function is

plotted in. If you change the axes range of a graph later (e. g. for “zooming” into a

detail), the number of calculated points may not be sufficient anymore for represen-

ting the curve accurately. In this case you should redraw the function to create an

optimized plot for the new range.

Note that plotting with the “auto”-option results in the smallest number of data points stored to

represent a function’s curve. In this way you can create a plot that uses a minimum amount of

memory and that is redrawn at maximum speed. However, to create such a curve, the function has

to be calculated at a much larger number of points. If you are working with a slow function, you

may prefer to use a fixed step to obtain faster plotting, and to go over to auto step only when you

want to produce a final graph.

• The function can be plotted over the whole given range. Alternatively, you can specify start point
and end point manually. Specify this by choosing one of the icons titled X range:

A graph with its curve from min to max (left) and a graph created using the “From.. To” option.

 Drawing and Plotting 85

The two popup menus in the top left corner of the fields “X-axis” and “Y-axis” are used to choose the
axis to be used for plotting, and to determine its range. The second popup menu determines the
scaling type of the axis.

The controls under the heading Magnitude define the settings for the x-axies:

• The popups titled Y-axis and Scaling are used to define the x-axis of the graph to be used as well
as ist scaling type.

• Check Auto range to let pro Fit automatically calculate the ranges of the y-axis, starting from the
y-values returned by your function. If you plot into an existing graph, the ranges of the axes you
use for the plot will be extended, if necessary. If you uncheck “Auto range”, you can enter the
ranges manually.

The controls under the heading Options let you choose the following options:

• Check New window if you want to create a new graph in a new drawing window. Uncheck this, if
you want to use the frontmost drawing window.

• Check Plot into current graph to plot into the current graph. The current graph is usually the one
where the last plotting took place. However, you can define any graph to be the current graph by
double-clicking it and checking Current Graph in the dialog box that appears (Read more about this
dialog box later in this chapter.). As a shortcut, you can hold down the command key and double-
click the graph. If both “Plot into current graph” and “New window” are unchecked, a new graph is
drawn in the frontmost drawing window.

• Use the popup Style to select the graph style for the new graph. A more detailed explanation of
graph styles is given below.

• Use the controls titled Line style to specify the style of the curve representing your function.

• The controls titled Fill allow you to specify if and how the area below the curve is to be filled.

To plot an output value (y-value) of a function versus two of its input values, choose the command

Function f(x,y) from the Plot menu:

86 Drawing and Plotting

Most of the options are the same as in the previous dialog box. Note the following differences, though:

• For the x- and the y-axis, you have to specify an Input value .of the function corresponding to the
axis. The input value can either be the function’s x-value or one of its parameters.

• The z-axis defines the default color scheme and the location of the contour lines to be used, as well
as the scaling to be applied to the function’s output value.

• The pop-up Color scheme allows you to select a color encoding to use when drawing a color plot
of the function.

• Check Draw color plot to draw a color plot, and Draw contours to draw the contour lines. The
following two graphs show a color plot (left) and a contour plot (right) of a given function:

 Drawing and Plotting 87

Plotting a two-dimensional data set

To create a scatter plot, skyline plot or histogram of a set of x- and y-values:

1. Open a data window with the data you want to plot.

2. Choose Scatter Plot... from the Draw menu.

The following dialog box appears:

Select the window containing the data set, an x-column in the section “Coordinates” and at least one

y-column in the section “Magnitude”. Check selected rows only if you only want to plot those rows of

the data set that are currently selected in the data window.

Then you can define the axes, their ranges, and their scaling:

• The two popup menus titled X-axis and Y-axis are used to choose the axis to be used for plotting,
and to determine its range. The popups titled Scaling define the scaling type of the axis.

• Check Auto range to let pro Fit automatically calculate the ranges of the axis based on the values
of the selected data set. If you plot into an existing graph, the ranges of the axes you use for the plot
will be extended, if necessary. If you uncheck “Auto range”, you can enter the ranges manually.

88 Drawing and Plotting

If you do not use Auto range but define your own ranges in min and max, all data points

outside these ranges are ignored – only data points within the ranges of the graph are

plotted and stored together with the graph. If you always want the complete data set to

be stored with the graph, check Auto range and resize your graph after plotting..

The controls under the heading Options define the graph to be used for plotting and the plotting style:

• Check New window if you want to create a new graph in a new drawing window. Uncheck this, if
you want to use the frontmost drawing window.

• Check Plot into current graph to plot into the current graph. The current graph is usually the one
where the last plotting took place. However, you can define any graph to be the current graph by
double-clicking it and checking Current Graph in the dialog box that appears (Read more about this
dialog box later in this chapter.). As a shortcut, you can hold down the command key and double-
click the graph. If both “Plot into current graph” and “New window” are unchecked, a new graph is
drawn in the frontmost drawing window.

• Use the popup Style to select the graph style for the new graph. A more detailed explanation of
graph styles is given below.

• Use the controls titled Connect points to specify if the data points are to be connected and, if yes,
the thickness, color and dash pattern of the connecting line.

• Check Draw points to draw a plot symbol for each point. Check Use line color to force the color of
the data points to be equal to the color of the connecting line between the data points.

• Check Draw error bars to draw error bars for each point using the default x-error and y-error
columns of the selected data window. (To specify those columns, click into each one while holding
the control key down and choose "Default X-error" or "Default Y-error". Then choose the Plot XY
Data command.)

• The controls titled Fill allow you to specify if and how the area below the curve is to be filled.

• Use Plot type to select if you want a scatter plot, bar chart or skyline plot.:

0 1 2 3 4 5 6 7

- 2

0

2

4

bar charts

0 1 2 3 4 5 6 7

- 2

0

2

4

scatter plot

0 1 2 3 4 5 6 7

- 2

0

2

4

skyline plot

When using scatter plots, use the Point style pop-up menu to select a plot symbol. If you are plotting

multiple data sets, only the first set will be drawn with this symbol. The symbols of subsequent sets are

chosen according to the current graph style. See section “Styles”, later in this chapter for further

information about graph styles.

Bar charts and skyline plots can also start from the vertical axis:

 Drawing and Plotting 89

- 3 - 2 - 1 0 1 2 3 4 5

0

2

4

6

8

-3 - 2 - 1 0 1 2 3 4 5

0

2

4

6

8

The main differences between bar charts and skyline plots are:

• In bar charts, the bars have always the same width. The width is either derived from the smallest
distance of two data points or is a fixed value. In skyline plots, the “steps” can have varying width
depending on the distance of the data points:

0 1 2 3 4 5 6 7 8
0

2

4

6
bar chart

0 1 2 3 4 5 6 7 8
0

2

4

6
skyline

• When plotting multiple bar charts, the bars can either be behind each other or on top of each other.
In skyline plots, the plots are always on top of each other.

0 1 2 3 4 5 6 7

- 2

0

2

4

bars side by side

0 1 2 3 4 5 6 7

- 2

0

2

4

bars behind each other

Most of the options for bar charts can be set by double-clicking the graph and selecting the “Bar

charts” panel. This panel is desribed below, in the section “Bar charts panel”.

Note: You can use text columns for plotting. When you e.g. create a plot using a text column as x-

column, the labels of the x-axis of the graph will be set to the texts in the text column. This type of

"category axes" are especially useful for histograms.

Plotting a three-dimensional data set

There are two command for plotting data sets that have z-values (in addition to explicit or implicit x-

and y-values):

If your dataset is a sequence of x-, y- and z-values in three separate columns, use the command Data

z(x,y) from the Plot menu. If your dataset is a matrix of z-values in a data window, and the x- and y-

90 Drawing and Plotting

values correspond to the row and column indices of the individual z-values, use the command Data

z(row, col) from the Plot menu.

Both commands bring up dialog boxes where you can choose the data to be plotted. In the XYZ

Columns command, you can choose the X-, Y- and Z-Column. In the Table of Z-Values command,

you can choose the data window or a part thereof that holds your data.

Note: The Table of Z-Values command assumes that the rows and columns indices correspond to the

current range of the X- and Y-axes of the graph. In other words, a plot created with this command will

always cover the complete graph, even if you change the range and scaling of an axis.

The z-values are represented by contour lines and/or by a color encoding. The color encoding is

derived from a color scheme, and its range corresponds to the range of one of the z-axes of the graph.

When plotting, you can specify the z-axis to be used.

Graphs and legends

When you plot data or functions, you

create a graph object and a legend

object..

Graphs and legends are the most

important drawing objects.

0 1 2 3 4 5

0.0

1.0

2.0

x

y

y = x0.5

data

graph

legend

Editing legends

A legend contains a description for each curve or data set of its graph. The

description consists of a symbol identifying the plot and a text. You can change

the line and point style of a plot as well as the text by double-clicking the

respective items in the legend.

• Double-click the text of a legend to change a the name of a plot.

1st set

1st fit

2nd set

2nd fit

• Double-click the plot symbol to choose the color, plot symbol and line styles for a plot.

Find more information on this topic later in this chapter.

To change the space allocated for the plot symbols or the distance between lines in the legend, simply

resize the legend by dragging its selection points.

A graph is logically linked to its legend and vice versa. If you change the appearance of a plot, the

change is reflected in both the graph and its legend.

To mantain this relationship, only one legend can attributed to a graph. If you duplicate a

legend, e.g. by option-dragging or copy and paste operations, the duplicate will be an

inert picture shape not linked to any graph.

You also can ungroup a legend. This transforms the legend into a set of simple drawing

 Drawing and Plotting 91

shapes, which then can be copied.

If you do not need the legend, delete it. You can always create a new legend for a graph by double-

clicking the graph and checking “Draw legend” in the dialog box that appears.

Note that you can change the text style, font, and font size of a legend by selecting it and choosing an

appropriate setting from the Style, Font, and Size submenu in the Misc menu.

You also can change the line styles and color of curves and lines in a legend by choosing the

appropriate setting from the “Pen” and “Dash” pop-up menus in the drawing tools palette:

• To change the line style of the first item in a legend that is drawn using a line (either connected

data points or a function curve), select the legend and choose the line style in the “Pen” and/or

“Dash” pop-up menus.

• To change the line style of all items in a legend, select the legend and choose the line style in the

“Pen” and/or “Dash” pop-up menus while holding down the shift key.

• To add a connecting line to the first data point in a legend, select the legend and choose a line style

from the “Pen” or “Dash” menu while holding down the option key.

• To add a connecting line to all data points in a legend, select the legend and choose a line style the

“Pen” or “Dash” menu while holding down the shift key.

By default a legend lists every plot of the related graph. You can, however, hide one or more plots

from a legend by unchecking “Appears in legend” in the dialog box for editing curve styles. This is

explained later in this chapter.

 A legend can be ungrouped by selecting the legend and choosing Ungroup from the Draw menu.

When an legend is ungrouped, it is transformed into a set of lines, data points and texts.

Editing graphs

The possibilities for changing and editing a graph are nearly unlimited. A whole set of specialized

options lets you create the graph you need. These options are accessed either by double-clicking the

graph or its legend, or by using the Graph Options submenu in the Plot menu. (This submenu is only

available if a single graph is selected or if a drawing window contains only one graph.) When you

double-click a graph or choose “General...” from the Graph Options submenu, the following dialog box

appears:

92 Drawing and Plotting

The icons (“panels”) in the list at the top of this dialog box correspond to the items in the Graph

Options submenu. Click the icons to access and edit the various parts of a graph. Click the Apply

button to see the effects of your changes.

Panel “General”

Check Current graph to make this graph the currently active graph. This is the graph where plotting

takes place per default.

The three Draw check boxes indicate if legend, frame and grid should be drawn or not. If you

uncheck the box named legend, the legend is deleted. If you check it again the legend reappears to the

right of the graph.

The Drawing Sequence popup menu defines the order in which the various parts of a graph (curves,

axes, grid) are drawn. This is especially important if you use color to highlight your curves or if you

use very large data points. A grid in front of a curve can then look quite different from a grid behind a

curve.

The Graph width and Graph height edit fields let you enter precise dimensions for the graph. You

can also do this by selecting the graph in the drawing window and editing its size using the Drawing

Info window.

 Drawing and Plotting 93

Check Autorange after updates to force the ranges of the graph's axes to be updated after an update

command to match the updated plots. If you do not want autoranging to take place, uncheck this

option.

The button Styles lets you save and load the current settings of a graph. A more detailed description of

graph styles is given at the end of this chapter.

In the following sections we discuss the various parts of a graph and how to edit them.

Panel “Axes”

When you want to edit an axis, double click it. Alternatively, you can choose Axes... from the Graph

submenu in the Menu Draw, or you can reach the axis editing panel using the list of icons in the Graph

Settings dialog box.

The axis editing panel for x-axes looks like this:

94 Drawing and Plotting

Use the popup menu in the top left corner to navigate between the various axes, to create a new axis, or

to delete the current axis. (The X1 and the Y1 axes are the main axes and cannot be deleted.).

The edit field in the top right corner gives the position of the selected axes in the main axes coordinate

system. Use this field to change the position of a horizontal (or vertical) axis with respect to the vertical

(horizontal) main axis coordinates. The position is set by default to the minimum and maximum

bounds of a plot when it is first created.

Two graphs with different vertical positions of the horizontal axis.

If the dialog box does not show the main axis (X1 and Y1 are the main axes) an additional check box is

present. It is called Same as X1 (or Same as Y1).

If Same as X1 is checked, most settings of the selected axis (such as the range, scaling, color, line

thickness, tick positions) are taken from the main X1 axis.

If you want to use two different axes for the top and for the bottom of your plot, you

have to uncheck this box before making any changes.

The tabs buttons Range & Ticks, Labels, Prefix and Lines let you switch between different sub-

panels that are used to edit the general appearance of an axis, the appearance of its labels, and the kind

of lines that are used to draw the axis and its tick marks.

If you check General, you can set the following options:

 Drawing and Plotting 95

The Draw check boxes determine which parts of an axis are drawn.

The First, Last fields and the popup menu to their right are used to edit the range of the axis and its

scaling type. See the beginning of this section for a discussion of scaling types. Note that First can be

larger than Last if you want to reverse the axis.

The Ticks field to the right of the Draw check boxes is used to edit the tick marks. Enter the first major

tick, the distance between major ticks, and the number of minor ticks between two consecutive major

ones.

The edit field 1st major gives the coordinate of the first major tick on the axis.

For a linear axis the Distance field defines the distance between the major ticks. For a logarithmic axis

this field changes its name to Decades and defines the number of decades between major ticks. For a

1/x-scaling the edit fields work in the same way as for linear scaling. For probability scaling, you can

edit the list of tick marks directly using the Custom check box.

For a linear axis the # minor field gives the number of minor ticks that are drawn between two major

ones. For a logarithmic axis this field is replaced by a check box called small ticks, which must be

checked to draw the minor ticks. If major ticks are drawn for each decade, the minor ticks are drawn

for each multiple of ten. If there is more than one decade between major ticks, the minor ticks are

drawn at all the powers of ten between the positions of the major ticks.

96 Drawing and Plotting

Instead of automatically calculating the positions

of individual ticks, you can set them manually.

Check the custom check box. This changes the

contents of the ticks field.

A list appears that contains all the ticks of the

axis. To add a tick, click a free space in the list

(there is always a free space at the bottom of the

list) and enter the desired coordinate.

To remove a tick, select it in the list and press the delete key. To change the position of a tick, click it

and enter a new value. Check major to create a major tick. Major ticks are written in bold face in the

ticks list. Click the Standard button to automatically re-calculate the tick positions according to the

present axis settings.

To set the label of a tick mark to some general text instead of a number, double-click the label in the

drawing window. The text edit dialog box appears and you can then enter any kind of text you want.

Click Labels in the axis dialog box to edit the format of the labels. The inner part of the dialog box

now looks like this:

Use the Format field to set the format of the numbers. Choose Decimal to suppress exponential

representation, Auto exponent to have all labels in exponential format with varying exponent, Fixed

exponent to have all labels in exponential format with a common exponent.

The Digits field defines the number of digits to be shown after the decimal point. Check Delete

trailing 0’s to cut off any trailing 0 digits after the decimal point, which is particularly useful for

logarithmic axes.

 Drawing and Plotting 97

Use the Font field to specify the text font, size, and style to be used for the labels of the current axis.

The Location popup menu defines where the labels of an axis are drawn. The edit field to its right

defines the distance between the labels and the axis or the frame of the graph The value in this field is

in points (= 1/72 inch or 0.35 mm). Note that it can also be negative.

The pop-up titled Rotation allows to to rotate the labels by multiples of 90°.

Click Lines to change the appearance of the lines used for drawing the axis and its tick marks, and to

set the position where the tick marks are drawn. The inner part of the dialog box now looks like this:

Use the Ticks location popup menu to set the position of the tick marks. In the Major ticks and

Minor ticks fields you can set the line style, length and color of major and minor tick marks. The line

style used to draw the axis can be edited using the “Axis line style” popup menus.All the options

outlined above for editing axes let you create many different kinds of graphs. Note that you can create

new axes and change their scaling, tick marks, etc., also if you don’t use them to plot any curve.

For example, you can uncheck the “Same as X1” check

box in the X2 axis panel and edit it to reflect a completely

different scaling, labels style, and range than the X1-axis.

A typical application for this is a graph that displays its x-

values on its horizontal bottom axis and the reciprocal x-

values on its top axis.

A graph with a different coordinate axis
as the “X2” axis..

As an example, imagine that you have a set of data that was measured for different light wavelengths

between 400 and 1000 nm. You would like to plot your data as a function of wavelength, but you

98 Drawing and Plotting

would also like to have a reading for the light energy in eV on the top axis. The energy of the light is

inversely proportional to the wavelength, so you have to use 1/x scaling for the top axis.

To create such a graph:

1. Create a graph with an x-axis from 400 to 1000.

Simply plot your data between these limits. Choose Scatter Plot... from the Draw menu. Make sure

that you create a new graph by unchecking ‘Plot into current graph’ in the dialog box that comes

up.

2. Double-click the upper x-axis (“X2”-axis).

The axis dialog box (see above) for the top axis appears.

3. Uncheck “Same as X1”.

Do this to make sure you only change the top x-axis, leaving the bottom x-axis alone.

4. Change the axis scaling to “1/x”.

Be sure that the “General” radio button is selected and use the scaling popup menu, found to the

right of the edit fields for the axes ranges.

5. Enter 1.2398 for First and 3.0996 for Last.

A wavelength of 400 nm corresponds to an energy of 3.0996 eV, while a wavelength of 1000 nm

corresponds to an energy of 1.2398 eV.

6. Edit the tick marks

Do this by changing the values in the Ticks field. Note how the density of ticks tends to increase for

larger values. Go over to custom ticks and edit the ticks list directly if necessary.

The end result could be something like this:

Note that the top axis, which has 1/x scaling, has the smallest value to its right and the largest value to

its left.

 Drawing and Plotting 99

Click Prefix in the axis dialog box to set pre- and postfix for the labels, to multiply them with a given

factor or to offset them by a given value:

Click Prefix or Postfix to prepend or append a string to each label.

The value in field Factor is multiplied with the value of each label before its string is generated. You

may e.g. enter 100 here to display values between 0 and 1 in percent.

The vaue in the field Offset is added before the string of the label is generated.

Panel “Plots”

You can change the appearance of the individual plots in a graph in many ways. Choose Plots from the

Graph submenu (Draw menu) or click the Plots icon in the Graph Settings box. You can also double

click a plot symbol in the legend.

The Graph Settings dialog box now displays the curves editing panel.

100 Drawing and Plotting

Here you can select and change or delete all curves and data sets of a graph.

To change the drawing order of the plots, select a plot (by clicking it in the list) and click Forward,

To Front, Backward or To Back to move it one position backward or forward or to move it to the

back or front of all plots. The first plot symbol at the top of the list is drawn first, so back means top of

the list, and front means bottom of the list.

To change the text describing a curve or a data set, select the curve in the list. and click Edit Text....

Instead of doing this you can also double-click the item in the list of curves and data sets.

To specify if a data set is to be show as scatter plot, bar chart or skyline plot, use the menu Plot type.

The pop-up menus titled Line let you edit the line that draws a curve or connects the data points.

The pop-up menu Points lets you select the symbol for data points. Check Line to draw lines between

successive data points or for a skyline plot. The menu Thick defines the line thickness used to draw the

data point symbols. It can be set to auto, in which case the line thickness will be chosen depending on

the size of the data points.

 Drawing and Plotting 101

Click the E-Bar Style... button to define the style of the error bars.

You can fill the region between a curve and one of the axes with a color and pattern of your choice. To

do this, check Fill and select the axis towards which the plot must be filled and the fill color and

pattern using the popup menus to its right.

Check Contour plot to draw contour lines for the z-values of a three dimensional plot. To define the

location of the contour lines, change the settings of the z-axis attributed to the plot.

Check Color plot and select a color scheme to draw a color-encoded image of the z-values of a three

dimensional plot.

The Coordinate Axes popup menus define the coordinate axes used by the selected curve or data set.

With these pop-ups menu you can change the reference axis of any given curve.

Doing this for function curves which were drawn with auto step is not recommended. If

the scaling of the original axis and the one of the destination axis differ considerably, the

results can be disappointing. Remember that a function curve is only defined by a set of

points. pro Fit calculated these points in an optimized way when it plotted the function

for the axis scaling and range on which the function was plotted. If you then change

scaling or range, your curve may loose its smoothness. In such a case it is better to

redraw the function curve on the new axis

Check Appears in legend to make the curve or data set appear as an entry in the legend. Uncheck this

check box to hide the corresponding entry in the legend. When an entry is visible in the legend, you

will usually change its style by double-clicking it. When an entry is not visible in the legend, you must

choose Curves... from the Graph submenu to access and change the style of the corresponding curve or

data points.

Click Tabulate to recover the original data points that were used to draw the plot. In this way you can

retrieve data points from a drawing when you have lost the original data set, or you can obtain a list of

the data points that pro Fit calculated to draw a particular function.

Click Delete to delete the curve or data points from the graph. You can use the delete (backspace) key

as a keyboard equivalent for this button.

Click Update to force a function plot to be redrawn with the currently selected function using the

parameters displayed in the parameters window. For data plots, the name of the button changes to

Data/Errors… and clicking it allows you to select the data set linked to the plot and to add or change

the error values.

Panel “Frame”

A frame is a rectangular box around your graph:

102 Drawing and Plotting

An unframed and a framed graph.

To change the appearance of a frame, either double click a graph and click the Frame icon, or choose

Frame from the submenu Graph in the Draw menu

In the dialog box that appears you can edit the Line style of the frame, and determine if tick marks

must be drawn on it. The tick positions of the main coordinate axes (X1 and Y1) are used. If you draw

a frame with ticks, you usually do not wish to draw the axes ticks as well: Uncheck the corresponding

check boxes in the axis dialog box.

Panel “Grid”

Grid lines are horizontal and vertical lines at the positions of the ticks.

0 2 4 6 8 10 12
1

10

100

1000

0 2 4 6 8 10 12
1

10

100

1000

A graph without and with grid lines.

 Drawing and Plotting 103

To add grid lines to your graph, double click a graph and check Draw grid. This will add horizontal

and vertical grid lines. To customize the grid lines click the Grid icon in the same dialog box or choose

Grid from the Graph submenu:

In the Grid editing panel that appears you can define where you want to have horizontal and/or vertical

grid lines, and if you want to see them at minor ticks, major ticks, or both. You can also choose which

axes must be used as a reference to draw the grid lines. The grid lines are drawn at the tick marks of

their reference axis. By default, the ticks of the main axes (X1 and Y1) are used.

Panel “Bar charts”

To select the options for displaying bar charts, double-click the graph and select the “Bar charts” panel:

104 Drawing and Plotting

The pop-up at the top defines how to draw multiple bar charts in a single graph. They can either appear

side by side or on behind each other:

0 1 2 3 4 5 6 7

- 2

0

2

4

bars side by side

0 1 2 3 4 5 6 7

- 2

0

2

4

bars behind each other

The settings under Bar width define the width of individual bars. The width can either be a percentage

of the available space or an absolute value (in pixels, centimeters or inches).

The settings under Group width are used when drawing multiple bars in “side by side” mode. In this

case, each group of bars (bars for the same value) has the given group width, which can again be a

percentage of the available space or an absolute value (in pixels, centimeters or inches).

 Drawing and Plotting 105

The Base line is the line the bar charts start from. There is a horizontal base line for vertical bar charts

and a vertical base line for horizontal bar charts. You can set the position and line style of each base

line.

Check Frame bars with rectangles to select how bar charts are framed:

(Note: You must check the option “With line” in the Panel “Curves” for the framing to appear.)

Graph Styles

The appearance of a graph is defined by many parameters, such as its size, the ranges of its axes, the

number of minor ticks, the symbols used for plotting, etc. These settings are called the style of a graph.

You can save the style of a graph to use it (or parts of it) later for another graph. Styles are saved in the

preferences file.

By using styles, you can create graphs with equal formats, e.g. graphs having the same size, the same

length of the ticks, the same fonts, etc.

To save the style of a graph you can either double-click the graph and click the button Organize in the

dialog box that comes up, or you can choose Styles... from the Graph submenu (in the Draw menu)

after having selected your graph:

106 Drawing and Plotting

This box shows a list of the styles that are already saved in the current preferences file. You can delete

one of these styles by selecting it and clicking Delete. To save a new style, enter its name and click

Save. To load a style, select its name in the scrolling list and click Load. The name of the button

changes from Save to Load when you move from the Style name edit field to the Saved styles scrolling

list.

If you click the Default check box when saving a style, or if you define a style with the name

“Normal”, this style becomes pro Fit’s default style. The next time you start up pro Fit, the first graph

you create will use this style.

When you load a style, a dialog box appears, asking you to choose which parts of the style you want to

apply to your graph:

The characteristics of a style are:

• Bounds: The ranges of the graph, i.e. the minimum and maximum of all the axes; the positions of

the first ticks; the distance between major ticks; the number of minor ticks.

• Axes and grid styles: The line thickness, dash and color of the axes, the frame and the grid; the

distance of the labels from the axes; the location of the ticks (inside or outside).

• Curve styles: The line style of all plots, i.e. curves and data points.

• Text styles: The font, size, and text style of the labels.

• Label styles: The number format of the labels. The number of digits after the decimal point and the

representation (exponential, auto, decimal) of the labels.

• Tick styles: The number of minor ticks, the axes scaling (logarithmic or linear) and whether the

labels are visible.

• Graph size: The horizontal and vertical size of the graph (length of the coordinate axes) and the

relative position of its labels and legend.

 Drawing and Plotting 107

Graph coordinates and zooming

Normally you can look at coordinates and analyze data sets and function using the Preview window.

However, options similar to the ones available in the preview window, although more limited, can be

used when editing graphs.

Hold down the command and option key simultaneously and click and

drag over a graph object. pro Fit displays the mouse location in the

main axes coordinate system. The coordinates are displayed to the right

of the cursor and in the bottom left corner of the drawing window.

If you now press the shift key, you can select a part of the graph. The

ranges of the graph will be changed to display only this part. This is

useful for zooming in on some part of the plotted data set.

Shape properties

All shapes (objects) in a drawing window have “properties”, such as their position or size. These

properties can be read and set from a program, so it can manipulate shapes in a drawing window. For

more information, see the documentation on GetShapeProperty and SetShapeProperties in pro Fit’s on-

line help.

Most of these properties can also be set and changed manually. For instance, when you move a shape

to a new location, you change its position properties. Some of the properties can also be accessed by

choosing “Shape Settings...” from the Draw menu. (You can also double-click most shapes for getting

into the corresponding dialog box. When a window is in dialog mode, command-double-click the

shape.)

The most important setting you can access through this box is the shape’s name. This is a unique string

attributed to each shape and used by programs for accessing the shape.

For more information, see Appendix A and Chapter 9 of this handbook.

Drawing windows in dialog mode

Drawing windows can be put into “dialog mode”. In this mode, the window obtains the same

background as dialog boxes. This is required when you want to create a complex dialog box using

control shapes. You create and edit the control shapes while the drawing window is in its normal state.

When you have finished, you switch the dialog window to dialog mode. In this mode, the drawing

window cannot be edited anymore.

108 Drawing and Plotting

normal mode

dialog mode

To switch a drawing window into dialog mode, hold down the control key while clicking anywhere

into the window and choose “Display As Dialog”. Alternatively, choose “Get Info...” from the File

menu and check the option “Display As Dialog”.

For more information on creating dialog boxes, see Chapter 9, section “Working with control shapes”.

 Fitting 109

8 Fitting
This chapter describes what pro Fit does when you perform a fit.

‘Fitting the parameters of a function to a data set’ roughly means finding those parameters that make

the function’s curve follow the data points as closely as possible.

There are various possible definitions of the term ‘as closely as possible’. The correct definition is

often determined by the origin and characteristics of the data set to be fitted. For example, a data set

might be subject to large errors in the x-coordinate and to smaller errors in the y-coordinates. The

probability of incurring in a given measurement error can decrease in some known way when the

magnitude of the error increases.

There are also various possible methods of looking for the best parameter set.

pro Fit provides a choice of different ways for “measuring the distance” of the data points from the

function, as well as a choice of different methods to reach the best parameter sets.

The first part of this chapter deals with the definition and mathematical description of deviation

functions and fitting algorithms, the second part shows you how to select these options in pro Fit and

how to run a successful fit.

Mathematical background

In order to find the best parameter set describing a given measurement, it is necessary to establish a

quantitative method to “measure the distance” between a data set and the function that should describe

it.

This requires the introduction of weights for the data points and of probability distribution functions.

They are described in the next sections.

Distribution functions and data weights

Consider a function f(a1,.., an, x) f(x) (we won’t write explicitly the function parameters every time)

and a measured data set (x1,y1), ..,(xi , yi), ..,(xN , yN){ } .

Let’s assume that the function, with its “true” parameter set,

correctly describes the quantity that was measured. We further

assume that, when the data point (xi , yi) was determined, the “true”

system (the one described by the function f(x)) was at the

coordinates (ˆ x i , f (ˆ x i)) . When the x-coordinate was determined, an

inevitable experimental error occurred, and xi was measured instead

of ˆ x i . When the y-coordinate was determined, another inevitable

experimental error occurred, and the measurement gave yi instead of

f (ˆ x i) .

In real life the true parameter set is not known. One has to measure it by measuring many data points at

different coordinates and fit f(x) to the complete data set. This is the way we usually find a parameter

110 Fitting

set which best describes the measurement. The parameter set obtained in this way is not the true

(unknown) parameter set, but it should be a good approximation for it. (See the section on Error

Analysis to find out how to estimate the errors of the fitted parameters.)

The fitted parameter set corresponds to a function f(x) which maximizes the probability that the

measured data set came from the system described by f(x). To maximize this probability, we have to

minimize the deviations between the measured data points and the function curve. This deviation can

be defined in different ways, depending on the way in which the experimental errors are distributed,

but it is usually a function of the weighted distances

 dx i =
ˆ x i xi

x i

 (1 a)

 dy i =
f(ˆ x i) yi

y i

 (1 b)

x i and y i give the magnitude of the errors expected when measuring the xi and yi, respectively.

The role of these x- and y- errors is to define the correct scaling of the x- and y- deviations between a

measured data point and the function that should describe it. The errors normalize the deviations,

introducing dimension-less numbers dxi and dyi . Data points are weighted differently (given more or

less importance) depending on their errors. A small error will magnify the importance of a given

difference, a large error will make the normalized difference less important.

The distances dxi and dyi give the difference between measured coordinates and “true” coordinates.

Obviously, we don’t know the true coordinates, otherwise there wouldn’t be any need for a fitting

program in the first place. But we can estimate the true coordinates by minimizing some function of the

distances dxi and dyi. This function describes the “difference” between the model function and the set

of data points, and it is chosen in such a way that its minimization corresponds to the situation with the

highest probability of producing the measured data set.

If the x- and y-errors are independent, a fitting algorithm must generally minimize a mean deviation

R of the type

 R = Rx (dx i) + Ry (dy i)[]
i

, (2)

where the functions Rx,y are deviation functions that tell us in a quantitative way how bad it is that a

certain (normalized) distance d is found for a data point. They are normally related to the error

probability distribution. This is the function that gives the probability that a certain measurement

error occurs. For example, Rx,y can be the negative logarithm of the corresponding probability

distribution for the distances dxi and dyi .

Minimization of R as defined in Eq. (2) adjusts the function f(x) in order to maximize the probability

that the measured data set corresponds to an underlying “reality” described by the adjusted f(x).

This is true as long as the following assumption is fulfilled: the measurement errors for each data point

must be uncorrelated and described by probability distributions centered around the “true” values

(ˆ x i, f (ˆ x i)) .

The above assumption might appear harmless, but it is in fact more stringent than one would causally

expect. For example, in most cases one tends to assume that the probability distribution is Gaussian,

but the actual probability distribution for the measurement errors might be different, with a sizable

 Fitting 111

probability of finding larger errors from time to time, i.e. points that are clearly outside the expected

trend (“outliers”).

To allow for an analysis of such cases, pro Fit provides a set of deviation functions R which correspond

to various error probability distributions.

The most common deviation function provided by pro Fit is the squared deviation

 R(d) = d2. (3)

When using this deviation function, Eq. (2) becomes the mean square deviation between data points

and function. Eq. (2) then corresponds to the negative logarithm of the probability of obtaining the data

set in the presence of normally distributed measurement errors. The deviation function (3)

corresponds to a Gaussian error distribution. In this case the probability density that a certain error

occurs when measuring xi or yi is given by a Gaussian distribution (or normal distribution)

The next deviation function provided by pro Fit is

 R(d) = d , (4)

and corresponds to a two-sided exponential error distribution exp(d) . It leads to the calculation of a

mean absolute deviation instead of a mean square deviation.

The deviation function

 R(d) = log(1+
1

2
d2) , (5)

corresponds to a Lorentzian error distribution 1/(1+ d2 /2) .

The last deviation functions available in pro Fit are

 R(d) =
c[1 cos(d /c)] d < c

c d > c

, (6)

with c=2.1 and

 R(d) =

c

6
1 1

d

c

2

3

d < c

c

6
d > c

, (7)

with c = 6. These deviation functions are called Andrew’s sine (the derivative of (6) is sin(z/c)) and

Tuckey’s biweight, respectively. They don’t correspond to a particular probability distribution for the

errors. They are designed to decrease the weighting of data points with very big errors (outliers) in

order to allow a “robust” fitting through the more “reasonable” data points. It should be obvious that

this procedure should only be used if you know your experiment and data set well enough, and we

repeat the usual calls for caution!

Note that using the deviation functions (6) and (7) with another constant c is equivalent to changing all

errors of the data points and the resulting mean deviation value by a constant factor.

112 Fitting

Each term in the sum (2) describes a deviation between the measured data point (xi,yi)and the

“nearest” point on the function curve (ˆ x i, f (ˆ x i)) . The coordinate ˆ x i must be chosen in such a way that

each term in the sum (7) is minimized for each data point.

When the deviation function R is the squared deviation R(d)=d2, then

each term in (2) gives the square of the Euclidean distance between

(xi,yi) and (ˆ x i, f (ˆ x i)) . The term is minimized when the line

connecting the data point to the function curve is perpendicular to the

function curve. A fit-algorithm must thus adjust the function until the

sum (2) of the squared perpendicular distances between data points

and function curve reaches a minimum.

We refer to the literature for more detailed discussions of the above deviation functions. A short

description is also found in the classical book by W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T.

Vetterling, Numerical Recipes - the Art of Scientific Computing.

The mean square deviation: Chi-Squared

When squared deviation functions are used, (2) gives the mean square deviation, which is often called
2:

2

=
(ˆ x i xi)

2

x i
2 +

(f(ˆ x i) yi)
2

y i
2

i

 (8)

The mean square deviation (chi-squared) is used when the measurement errors are described by a

Gaussian probability distribution, and in this case the errors
x i

 and
y i

 correspond to the standard

deviations of the Gaussian distributions.

The denomination “chi-squared” has become so common that it is often used to indicate the result of

(2), and not only to indicate the particular case (8).

For the sake of simplicity, pro Fit follows this somewhat “dirty” convention and uses the

denomination “chi-squared” when referring to the result of (2), even if deviation

functions other than square deviations are used. The same is true for the predefined

function ChiSquared, which can be used in pro Fit programs to retrieve the value of

(2) obtained in the last fit.

Zero X-errors

In most experiments it is possible to determine the x-coordinate much more precisely than the y-

coordinate. In such a case the x-errors can be assumed to be very small. The only way to minimize the

mean deviation (2) is then to have ˆ x i xi
. The mean deviation function becomes much simpler:

 R = R
f (xi) yi

y i

i

, (9)

The function is evaluated at the x-coordinates of the measured points. The function value and measured

y-coordinate directly give the normalized distance, when weighted with the measurement error.

 Fitting 113

The “usual case”: Chi-squared and zero x-errors

In many experiments it is not only possible to make the x-errors so small that they can be considered

zero. It is also common to have (or hope for) Gaussian distributed measurement errors. In this case we

have to minimize a particularly simple expression for chi-squared:

2

=
(f(xi) yi)

2

y i
2

i

, (10)

Since this case is easy to handle from an algebraic and numerical point of view, many common fitting

algorithms and applications work under the assumption that the mean deviation is the mean square

deviation given by Eq. (10). A classical fitting algorithm that works on this basis is the Levenberg-

Marquardt algorithm in its unmodified, original form (see below).

Error analysis and confidence intervals

Although some fitting algorithms (most notably the Levenberg-Marquardt fitting algorithm) do provide

estimates for the error of the parameters, these estimates are often not sufficient or too imprecise.

pro Fit provides a general way for estimating the confidence intervals within which the “true” value of

a fitted parameter can be assumed to lie with a certain probability level.

The influence of variations in the data points on the fitted parameters is analyzed with the help of a

Monte Carlo simulation. For this purpose, synthetic data sets are generated starting from the points

(ˆ x i , f (ˆ x i)) that were obtained in the fit (see above). For each of the original data points a simulated data

point is generated by random variation around (ˆ x i , f (ˆ x i)) within the specified errors and using the

specified error distributions. This produces a synthetic data set that effectively simulates a measu-

rement. The simulation of the measurement is based on the function that was determined in the last fit

(which is assumed to correspond to the underlying “reality”) and on the measurement errors that were

specified.

A short description of this error analysis technique is found in “W.H. Press, B.P. Flannery, S.A.

Teukolsky, W.T. Vetterling, Numerical Recipes - the Art of Scientific Computing”.

For each of the synthetic data sets, a fit is performed. Once that all synthetic data sets have been fitted,

the confidence intervals are calculated by analyzing the values obtained for each parameter. The

confidence interval thereby corresponds to the range enclosing a given percentage of the values.

When error analysis is complete, the results are printed in the Results window and a list of the fitted

parameters for each synthetic data set appears in a new data window. You can use the set of simulated

parameters for further statistical analysis.

Fitting algorithms

In the previous section we gave a short overview of the most important mathematical tools used to

establish criteria distinguishing a good fit from a bad one. Once these criteria are established, one can

use them to analyze parameter sets, and to find out in which direction the best parameter set can be

found.

The search for the best parameter set is the responsibility of a fitting algorithm, and pro Fit lets you

choose between three different ones: The Monte Carlo, Levenberg-Marquardt, and Robust algorithms.

114 Fitting

The algorithms differ by the method they use to orient themselves in parameter space and to find the

location of the best parameter set.

The Monte-Carlo algorithm minimizes (2) with any definition of R by randomly varying the

parameters and (if the x-errors are not zero) the set of x-coordinates ˆ x i and looking for the smallest

value of (2). This algorithm is often useful to scan parameter space and find good initial values for a

Levenberg-Marquardt, or Robust fit.

The Levenberg-Marquardt algorithm minimizes the mean square deviations using (8). It finds at the

same time the set of x-coordinates ˆ x i and the function parameters that minimize the mean square

deviations between the data points (xi , yi) and the function values (ˆ x i , f (ˆ x i)) . When the x-errors are

zero, the Levenberg-Marquardt algorithm minimizes (9).

The Robust fitting algorithm minimizes (2) with any definition of R by continually moving “downhill”

in parameter-space until the bottom of a valley is found.

The Linear Regression and the Polynomial fitting algorithms are specialized for polynoms of 1st and

nth degree. While the Linear Regression allows for x-errors (we use a straight forward algorithm if

there are no x-errors), the Polynomial fitting algorithm is restricted to y-errors only.

The mathematics used by the various algorithms to perform their job is outlined in the next sections.

The Monte Carlo algorithm

This method randomly varies the parameters of a function within given intervals. When x-errors are

defined, the algorithm also varies randomly the set of x-coordinates ˆ x i while observing the given

errors and error distributions.

For each random guess, R is calculated according to Eq. (2) and the parameter sets corresponding to

the smallest values of R are remembered.

The strength of this method is also its biggest disadvantage. It looks for the best parameter set by

shooting blindly inside the given region of parameter space. Although there is an option of letting this

parameter space region follow the position of the currently best parameter set, this algorithm can only

converge very slowly towards the best parameter set.

Its main use is to “scan” parameter space in order to find good parameter starting values for one of the

deterministic fit algorithms, or to try to “jump out” of a local minimum where a deterministic fitting

algorithm is stuck.

Since the algorithm is normally used for a first estimate of fitted parameters, it is not recommended to

run it with non-zero x-errors – this merely slows down the algorithm without substantially increasing

the accuracy of the estimates.

The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is derived directly from the mean square deviation expressions

(8) or (10) and cannot be used with deviation functions R other then the square deviation R(d) = d2.

The Levenberg-Marquardt algorithm is in principle the fastest fitting algorithm available in pro Fit. Its

performance, however, depends strongly on the behavior of the function to be fitted as well as on the

selected starting parameters.

The classical version of the Levenberg-Marquardt algorithm does not allow for x-errors and minimizes

the mean square deviation (10). The algorithm can be described in words as follows:

 Fitting 115

Starting from a given set of parameters, the mean square deviation 2 is calculated. Then the

parameters are varied slightly to observe their influence on 2. From this, the direction in which 2

decreases most rapidly can be evaluated and a new set of parameters is chosen. This procedure is

reiterated with this new set of parameters . When the minimum is near, the algorithm goes over to a

more deterministic “guessing” at the position of the minimum and solves some equations to find it. The

fitting stops when the value of 2 does not decrease anymore between successive steps.

The algorithm is described in W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical

Recipes - the Art of Scientific Computing, Second Edition, University Press, Cambridge, 1992.

When x-errors are specified, the algorithm is modified in such a way that it minimizes (8). It finds at

the same time the set of x-coordinates ˆ x i and the function parameters that minimize the mean square

deviations between the data points (xi , yi) and the function values (ˆ x i , f (ˆ x i)) .

The extensions to the Levenberg-Marquardt algorithm that allow the interpretation of x-errors are

described in P.L. Jolivette, “least-squares fits when there are errors in X,” Computer in Physics, Vol. 7,

No. 2, 1993.

Partial derivatives

To fit a function of the type y = f(a1,..,an ,x) the Levenberg-Marquardt algorithm needs the partial

derivatives of the function with respect to its parameters. It uses the partial derivatives when it

estimates the influence of the parameter set {ai} on 2. The partial derivatives fi' are given by

 fi '(x)
f(a1,..,an,x)

ai
 (11)

and they are calculated for all x-coordinates ˆ x i during every iteration.

When you define your own function for fitting and you find that the fitting process is too

slow, then you should define these derivatives explicitly (in the procedure called

derivatives). If you do not define the derivatives yourself, pro Fit must calculate

them numerically. This makes fitting considerably slower.

More information on how to define functions and their derivatives is given in Chapter 9, “Defining

functions and programs”.

Estimation of parameter errors

The Levenberg-Marquardt algorithm allows the determination of the standard deviations of the

parameters. These are the values that are printed in the results window after a successful fit, under the

heading "standard deviations". The standard deviation defines the region that contains 68.3% of the

total integral of a Gaussian distribution.

Whenever fitting errors are specified, the standard deviation aj of the parameter value aj obtained

after a successful fit is found from

 aj = [Cjj]
1/2

, (12)

where Cii is the diagonal element of the covariance matrix C. The full covariance matrix of the

parameters used in the fit is the inverse of a matrix A: C=A–1.

116 Fitting

When no fitting errors are specified, it is in principle not possible to calculate a covariance matrix.

However, what pro Fit does in case of “unknown” errors is to calculate the covariance matrix using

arbitrary error values of 1. It is then possible to make sense of this seemingly arbitrary covariance

matrix by considering the chi-squared that was obtained in the fitting. For the standard deviations of

the parameters, this amounts to calculating them from

 aj = [Cjj
2
]

1/2
, (12b)

If you need to work with the covariance matrix, and in general for any serious statistical analysis of a

fit, you must define errors for your data points!

The matrix A is also called curvature matrix, and it is defined by the errors (standard deviations) of

the data points and by the partial derivatives of the function with respect to the parameters. When x-

errors are specified the derivative of the function with respect to x must also be calculated and the

curvature matrix A is given by

 Aij =
1

y k
2

+ x k
2 f(xk)

x

2
k

f(xk)

ai

f(xk)

a j

 . (13)

If the x-errors can be considered to be zero, the curvature matrix A has the simpler form:

 Aij =
1

yk
2

f(xk)

ai

f(xk)

a j

k

 . (14)

Loosely speaking, this matrix describes the propagation of the errors from the data points to the

parameters. We refer to the specialized literature for more details.

If the x-errors can be regarded as zero, pro Fit lets you specify “unknown” y-errors. In this case, the yi

are assumed to be normally distributed, all with the same standard deviation . For fitting, yi is taken

to be 1 for all i. The “real” yi
2 is then estimated from 2 = 2 / (where is the number of degrees

of freedom, i.e. the number of data points minus the number of parameters) and ai is calculated from

the expressions given above.

It is interesting to consider the case where a parameter reaches one of its limits during a fit. As you

know, pro Fit lets you specify, for each function parameter, an interval of allowed parameter values. If

a parameter is at one of the boundaries of this interval after a fit, its standard deviation cannot be calcu-

lated. The parameter is then considered to be constant (i.e. it is not a free parameter anymore). The

standard deviations of the other parameters and 2 are calculated using the effective number of active

parameters at the end of the fit. The results obtained are the same as those that would have been

obtained by fitting with the parameter fixed at its limit from the start.

The standard deviations of the parameters (and the covariance matrix) that are obtained

in a Levenberg-Marquardt fit have a clear quantitative interpretation only if the errors of

the data are normally distributed. If the data errors are not given, the calculations for

evaluating the standard deviations of the parameters assume that the yi are normally

distributed and that the function is the correct description of reality.

Interpret the results carefully !

 Fitting 117

An alternative, more general way to estimate the errors of the fitted parameters is described in the

section “Error analysis and confidence intervals”.

The Robust minimization algorithm

This method minimizes R (2) with any definition of R by continually moving “downhill” in

parameter-space. Starting from some initial value, the parameters are varied and the resulting value of

R is calculated. From this, the algorithm finds the direction in which R decreases and moves that

way. Then it samples again the surroundings by varying the parameters. It stops when a minimum is

reached.

When the x-errors are not zero, the ˆ x i necessary for calculating the “minimal distance” between a data

point and the function curve are calculated for each data point by an explicit minimization of the term

R(dxi) + R(dy i)[] in Eq. (2).

Minimization is performed with limited precision in order to save processing time. The ˆ x i will be

determined to an accuracy which is a fraction of the x-error specified for each point. pro Fit will also

count the number of function calls it is using to determine one ˆ x i and will stop after a maximum of 50

function calls (normally much less function calls (<10) are needed to find the minimum). This

procedure introduces a small uncertainty in the determination of R. However, the statistical signi-

ficance of such an uncertainty will be limited, because the precision with which the ˆ x i are determined

is in any case much better then the errors of the data points.

A robust fit with x-errors larger than zero will be considerably slower than the same fit

performed with zero x-errors. When for zero x-errors evaluation of (9) requires a number

of function calls equal to the number of data points, evaluation of (8) will require more

or less ten times more function calls when x-errors are defined.

The Linear Regression algorithms

In this case we assume a straight-line model for the measured data with normally distributed errors.

 y(x) = a + b x (15)

A) If there are no x-errors and the y-errors are assumed to be known (i is the uncertainty of yi)

equation (9) can easily be simplified. At its minimum the derivatives after the two parameters a and b

vanish. This leads to a set of linear equations that are solved analytically:

 a =
SxxSy SxSxy , b =

S Sxy SxSy
 (16)

using the following definitions:

S
1

i
2

i=1

N

, xS
ix

i
2

i=1

N

, yS iy

i
2

i=1

N

,

xxS
i
2x

i
2

i=1

N

, xyS
ix iy

i
2

i=1

N

,

S Sxx
2

Sx()

 (17)

118 Fitting

From these we are also able to calculate the variances of a and b, and the correlation coefficient

between them:

a
2 = xxS , b

2 = S ,

abr =
xS

xS xS

 (18)

B) If the measurement shows errors in the xi the minimization of (8) becomes more difficult, i.e. the set

of equations derived for a and b are not linear any more. However, they are solved with numerical

means, i.e. with a standard root finding algorithm.

Together with the fitting parameters and their variances the correlation coefficient r is calculated

(Pearson's r). It takes a value between -1 and 1 depending on how much the x-values and the

corresponding y-values are correlated. r = +1 if there is a complete correlation with a positive slope, r =

-1 if there is a complete correlation with a negative slope, and r = 0 if there is no correlation at all.

The significance of the correlation is the "probability that |r| should be larger than its observed value in

the null hypothesis" (x and y being uncorrelated). It ranges from 0 (= good correlation) to 100% (= bad

correlation).

We refer to the specialized literature for more details.

The Polynomial fitting algorithm

Our model is the general linear combination of arbitrary functions

 y x() = ka kF x()
k=1

M

 (19)

The functions Fk can be wildly nonlinear functions of x. "Linear" refers only to the model's

dependence on its parameters ak.

Once again we assume that the measurment errors i of the ith data point are known. By defining the

matrix A and the vectors b and a as

 ijA =
jF ix()

i

, ib = iy

i

, ia (20)

it is possible to describe the minimization equations in matrix form

 TA A() a = TA b (21)

The variances of the parameters can be found as the square root of the diagonal elements of the inverse

matrix
1A .

To solve equation (21) we use the method of Singular Value Decomposition (SVD). It is a very robust

algorithm for overdetermined as well as for underdetermined systems, although it is a little slower and

needs more memory resources than solving the normal equations.

For further details see the literature listed below.

 Fitting 119

Goodness of fit

It is very important to know the quality of a fit; otherwise the minimizing parameters found are in

general not meaningful. The goodness of fit, which is the probability Q that a value of chi-square

should occur by chance, is calculated by the incomplete Gamma function

 Q = gammq
N M

2
,

2

2

 (22)

It depends on the degree of freedom, defined as the difference between the number of measured points

N and the number of varied parameters M.

If Q is large, e.g. > 0.1, the fit seems reasonable. If it is small, e.g. < 0.001, there might be something

wrong.

Literature and suggested reading

W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes - the Art of Scientific

Computing, Second Edition, University Press, Cambridge, 1992.

P.L. Jolivette, “least-squares fits when there are errors in X,” Computer in Physics, Vol. 7, No. 2, 1993.

120 Fitting

The fitting process

General features

With pro Fit, fitting is a highly interactive process. You can decide which parameters have to be varied,

set their starting values (estimates) and choose a fitting method. You can inspect the fitting process

while it is running, and interrupt it if you don’t like it. You can reiterate the process and change fitting

algorithms..

 The fitting process starts from the parameter values given in the parameters window. You can change

these values (click the numbers and edit them). The window also shows which parameters are to be

fitted: Only those whose name is shown in bold face will be fitted (for these parameters the check box

“Use for fitting”, which appears when you select a parameter, is checked).

The following is the parameters window for the function Polynom. Among all the inputs, the one

named x is also the default input value that is the independent variable for the function. All other inputs

are parameters that influence how the function generates its return value from the default input value x.

But for the parameter named ‘deg’, they will be all varied as fitting parameters.

To change the fitting mode of a parameter (e.g. from ‘fit’ to ‘not-fit’), click its name. It will switch

from bold to normal or from normal to bold. Alternatively, you can click the check box Use for fitting,

in the “selected parameter” field.

Some parameters can never be fitted. For example, it does not make sense to fit the degree of a

polynomial. The name of such a permanently fixed parameter cannot be made bold by clicking it. The

Use for fitting check box is disabled.

Parameters that can never be fitted are called constant parameters, those that are currently not fitted are

called inactive parameters, and those that are currently fitted are called active parameters.Parameter

limits

The value of a parameter can be limited to any specified interval by entering the boundaries of the

allowed interval in the corresponding edit fields. The edit fields appear in the “active parameter” field

once you select a parameter. A parameter is not allowed to leave the specified interval during fitting,

optimization of the function, or when you enter a new value in the parameters window.

 Fitting 121

See Chapter 5, “Working with functions and programs”, and Chapter 8, “Defining functions and

programs”, for more information on how to set parameter limits in user-defined functions. If no limits

are specified, the default values are - and (-Inf..Inf).

During fitting, each parameter is constrained to the interval specified by the parameter limits.

Running a fit

Running a fit consists basically of three simple steps:

1. Choose the function to fit in the Func menu.

Add your own function to the Func menu if it is not already there.

2. Define which parameters you want to fit and their starting values.

You can do this in the parameters window as described above. Look at the function and the data set

in the Preview Window to see how good your starting values are. Use the Fitting-tool in the

Preview Window to “push” the function towards the data points.

The importance of good starting values depends on the function to be fitted. Some functions, like

the Gauss function are more difficult to fit. A polynomial can be fitted with almost any starting

parameter set.

Note: Some of pro Fit’s built-in functions (such as Exp, Log and Power) provide algorithms for

automatically choosing good starting values. For these functions, you can check the option “Guess

Initial Parameters” in the fitting dialog box mentioned below and you don’t have to set appropriate

initial parameters before fitting.

3. Choose Fit from the Calc menu.

The Fitting window appears:

122 Fitting

Using this dialog box, you can set a number of fitting options. Once you are satisfied with them, click

OK and fitting will start.

You can switch from one fitting algorithm to the other using the Algorithm popup menu. More details

about particular options for each algorithm are given below.

The Data Window menu lets you select a data window (by default the foremost data window).

If Selected rows only is checked, only rows intersecting the current selection are used for fitting.

Otherwise, all data in the X- and Y-columns will be used.

The Data Column menus define the data set coordinates xi (input data) and yi (output data).

The popup menus Error type let you specify the errors of your data. For the input data, choose zero to

use zero x-errors (the usual case). In the output data, choose unknown if you don’t want to specify y-

errors – in this case, a value of “1.0” will be used as the error for all data points (regardless of the order

of magnitude of the y-values) and all points will have the same weight in the calculation of R (which

is calculated with yi 1). Choose Constant to set the standard deviation of all points to a given

absolute value. Choose Percent if you want to enter the error as a fraction of the data value in %. If

you have the errors stored in a column of your data window, then select Individual and choose the

appropriate column in the pop-up menu that appears.

 Fitting 123

Make sure that the columns you select contain the correct error values in the correct

positions. For each row in the table, there must be a one to one relationship between the

values in the x-, y-columns and the values in the error columns.

The Distribution popup menu, which appears when you define errors, gives the error-probability

distribution that will be assumed for the fit. This popup menu is dimmed if the Levenberg-Marquardt

algorithm is used, because this algorithm only works with Gaussian error distributions.

The checkbox Guess Initial Parameter tells pro Fit to use a function specific algorithm for choosing

appropriate starting values for the parameters. Such algorithms are available for some of pro Fit’s built-

in functions, such as ‘Exp’, ‘Log’, ‘Power’, as well as the ‘Peaks’ functions.

The resulting fitted function is shown in the section Plot. In addition, the numerical results are dumped

to the results window. Check Print active parameters only if you only want to see the values of the

parameters that were fitted. Use this option if your function has many parameters that you do not fit

and you do not want all the values of inactive or constant parameters to clutter the results window.

Check Print full description to get, for each fit, a header that describes the settings that were used for

fitting.

Check Error Analysis if you want to obtain more information on the accuracy of the fitted parameters.

Confidence intervals for each fitted parameter will be determined by a Monte Carlo method that

simulates a large number of fits with a series of synthetic data sets. More about this in the Error

Analysis section, below.

To start fitting, click Fit. Fitting can run for fractions of a second or for hours, depending on the

execution speed of the function you selected, the number of parameters to fit, and the number of data

points. The results of the fit appear in the result window. You might want to choose its name from the

windows menu and position it in a comfortable place before running a fit. You can let pro Fit always

bring the results window to the front after a fit by using the Preferences... command.

To speed up fitting when you are using one of your functions, you should define the function’s partial

derivatives with respect to its parameters. The section “The role of the partial derivatives” below gives

more information on this topic.

You can interrupt fitting by holding down the command key (�) and the period-key (.) simultaneously.

Note that pro Fit can run any fit in the background, this means that you can work with another

application while pro Fit is fitting. You may want to place pro Fit’s progress window in a corner of

your screen to watch what is going on.

Inspecting the progress of a fit

During lengthy fits, you can inspect what is going on and see if the fitting algorithm is behaving

correctly. pro Fit displays information on the current fit in its progress window:

124 Fitting

This window lists the total number of iterations, the current values of chi squared, and the current

values of the best parameter set.

You can see the progress of the fit graphically if you open the Preview Window and check the Show

Function check box. During a fit, pro Fit will periodically draw the function corresponding to the best

parameter set. This allows you to see how the function approaches the data set during a successful fit.

Because of this previewing feature, you will notice soon enough if the fit is not converging correctly,

and will then be able to interrupt it.

If your function performs many lengthy calculations, redrawing the function periodically

can slow down the fit. Hide the Preview Window, or uncheck “Show Function” if fitting

speed matters.

Error analysis and confidence intervals

Check Error Analysis in the Fit dialog box to get more information on the confidence intervals of the

parameters.

When Error analysis is checked, two more edit fields appear in the Fitting Setup dialog box.

The Error Analysis algorithm simulates a number of data sets equal to the value specified in the

iterations edit field. For each iteration, the corresponding parameter set will be determined by the

fitting algorithm you selected (either the Robust algorithm, or the Levenberg-Marquardt algorithm).

You should always use the Levenberg-Marquardt algorithm when performing error

analysis. Using the Robust algorithm is not recommended because this algorithm is

inherently slower than the Levenberg-Marquardt algorithm. Since error analysis

can need thousands of iterations, the convergence speed of the algorithm is very

important.

All parameter sets generated during error analysis will be collected and displayed in a data window

once Error Analysis is completed. You can then use them for a more complete analysis of the

distribution of each parameter.

 Fitting 125

Based on the simulated parameter sets, pro Fit estimates confidence intervals. You must specify which

confidence interval you want pro Fit to calculate by entering the corresponding probability in the

confidence intervals field. pro Fit calculates a confidence interval in such a way that the given percent

of the simulated parameter values are contained inside it.

During error analysis, pro Fit shows the status of the calculation in its progress window:

The window shows the status of the calculation and the confidence interval estimations based on the

currently available data. The calculation is a Monte Carlo calculation, so the boundaries of each

confidence interval will converge slowly and randomly towards some stable values.

If you want to see what happens during error analysis and your function draws itself fast enough, open

the Preview Window and make sure “Show function” is checked. pro Fit will redraw the function

periodically during error analysis and you will be able to see how the fitted function changes depend-

ing on the simulated data sets which are generated randomly. However, doing so will waste time for

drawing the function and slow down the error analysis procedure. Hide the Preview Window, or

uncheck “Show function” to make the error analysis procedure as fast as possible.

Fitting results

When fitting is completed, a summary of the results of the fit is displayed in the results window.

Depending on which fitting algorithm you used, the data printed to the results window can vary

slightly.

You may often want to transfer the values of the fitted parameters to the parameters window to use

them as starting values for a further fit. Choosing Get Fitted Params from the Calc menu transfers the

best set of parameters to the parameters window.

The results of a fit are made available to custom functions and programs through a set of predefined

functions used for accessing the fitted parameters, the confidence intervals, the value of chi squared,

and, for the Levenberg-Marquardt algorithm, the full covariance matrix. See pro Fit’s on-line help for

more details.

If you want to save the parameter sets obtained in every single fit, store them in a dedicated data

window. You can copy them from the parameters window and paste them into a single row of the data

window, or you can write a small macro (a pro Fit program) that transfers the fitted parameters directly

to their data window. See chapter 9 “Defining functions and programs” to see how to do this. An

126 Fitting

example program for transferring parameter values to a data window is found on the pro Fit distribution

disks.

Using the various fitting algorithms

pro Fit provides three different fitting algorithms: The Monte Carlo, Robust, and Levenberg-Marquardt

algorithms. They are described in the preceding section.

The following sections describe how each of these fitting algorithms is used, and what particular

options you can set for each algorithm.

Using the Levenberg-Marquardt algorithm

To start a fit with the Levenberg-Marquardt algorithm, choose Fit from the Calc menu after having

selected the appropriate function from the Func menu. The Fitting Setup dialog box appears with

Levenberg-Marquardt pre-selected in the Algorithm popup menu. :

See the preceding section for a description of this dialog box.

When you define errors, the Distribution popup menu is dimmed and set to a Gaussian distribution.

The Levenberg-Marquardt algorithm can only work if the errors of the data set are normally

distributed.

The Levenberg-Marquardt fit stops running when the chi-squared determined from the current

parameter set doesn’t decrease appreciably anymore from one iteration to the next.

When finished, the parameter values and their standard deviations are printed to the results window. If

you need to access the complete covariance matrix, you can define a program that uses the predefined

function CovarMatrix. See pro Fit’s on-line help for more details on how to use this function.

Using the Robust minimization algorithm

To run a Robust fit, choose “Robust” in the algorithm popup menu of the fit dialog box. This dialog

box appears when selecting “Fit” from the Calc menu, and it was described above.

Using the Distribution popup menu, which appears when you define errors, you can select the error

distribution that best describes your experiment. Robust fitting will deserve its name if you select a

distribution that diminishes the importance of outliers (like Andrew’s sine or Tuckey’s biweight).

When finished, the resulting parameter values are printed to the results window. This algorithm does

not determine a “standard deviation” for each parameter, like the Levenberg-Marquardt algorithm

does. To obtain error estimations you have to run a Levenberg-Marquardt fit after the Robust fit

converged, or you have to check the Error Analysis check box and perform a Monte Carlo analysis.

See the corresponding section for more details.

Using the Monte Carlo algorithm

To run a Monte Carlo fit, choose Monte Carlo Fit from the Calc menu or chose Monte Carlo in the

Algorithm popup menu of the Fitting Setup dialog box.

When you do this, two more items appear to the right of the Algorithm popup menu (Please refer to the

beginning of this section for a basic discussion of the Fitting window.)

 Fitting 127

Clicking Ranges... presents another dialog box where you can define the ranges within which the pa-

rameters can be varied:

By default, these ranges are the ten percent deviations of the starting value of the parameter (or –1 and

1 if the starting value is 0).

Checking Auto search tells pro Fit to make a more flexible search for the best set of parameters.

The Auto search check box determines whether the limits within which the parameters are varied will

be kept fixed (auto-search unchecked) or if they will be adapted during the fit (auto-search checked). In

the latter case, the limits will be shifted after every iteration to keep them around the best parameter

set. (Note that the parameters are never allowed to leave the parameter limits defined in the parameters

window.)

The Monte Carlo Fit runs until you interrupt it by pressing �-‘.’. If you don’t stop the fit yourself, the

Monte Carlo Fit runs for ever.

The three best sets of parameters are displayed in the results window after you interrupt the fit.

The Monte Carlo fit slows down exponentially when the number of parameters to be

fitted is increased.

Using the Linear Regression algorithm

To run a Linear Regression fit, choose “Linear Regression” in the algorithm popup menu of the fit

dialog box. This dialog box appears when selecting “Fit...” from the Calc menu, and it was described

above.

As the name indicates, this algorithm forces you to select the Polynomial function of degree 1, with

both parameters being fitted. It assumes a Gaussian distribution of errors. X-errors and Y-errors are

possible.

128 Fitting

When finished, the parameter values and their standard deviations are printed to the results window.

Additionally, the correlation coefficient r is calculated, as well as its significance, which is the

probability that |r| should be larger than its observed value in the null hypothesis (x and y being

uncorrelated).

Using the Polynomial fitting algorithm

To run a Polynomial fit, choose “Polynomial” in the algorithm popup menu of the fit dialog box. This

dialog box appears when selecting “Fit...” from the Calc menu, and it was described above.

As the name indicates, this algorithm forces you to select the Polynomial function of any degree. It

assumes a Gaussian distribution of errors. Only Y-errors are possible.

When finished, the parameter values and their standard deviations are printed to the results window.

Fitting multiple functions and x-values

You may sometimes want to fit simultaneously several functions (f1 .. fq) with one or more common

parameters. Or in other words, you may have a function with many outputs and use it to fit a multi-

dimensional set of data. Or you may want to fit a function that does not depend on a single x-value but

on a set (x1, x2 ... xp) of x-values. Or you might even encounter a combination of these two cases.

In the most general case, you have q functions (or q different outputs f1, f2, … fq) , each of them

depending on one or more inputs. Among the inputs, some are used as independent variables,

corresponding to the quantities that were varied during a measurement, others as parameters. Each

output is calculated using one or more of the various inputs. You can see this as a set of functions that

can share one or more parameters and that depend on any subset of the indepenent variables:

 y1 = f1(x1, x2 ... xp1)

 y2 = f2(x1, x2 ... xp2)

 …
 yq = fq(x1, x2 ... xpq)

For each function or output value, you have a set of data points that should be described by it. Now you

want to fit all these functions simultaneously.

pro Fit provides a dedicated tool for this type of multidimensional fitting.

There are several methods of tackling this kind of problem with pro Fit. This handbook has not yet

been updated to cover them, but pro Fit’s online help provides extensive documentation of this feature.

To view it, chose pro Fit Help from the Help menu and enter the search string “multiple fitting”.

General hints for fitting

Starting parameters

As already pointed out, the success of a fit often depends critically on the choice of a good set of

starting parameters. Bad starting parameters can cause convergence to a false (i.e. local) minimum of

 Fitting 129

the mean deviation R. It is good practice to always try to figure out reasonable values for starting

parameters. Some of the functions are able to take their own guess at a good set of starting parameters,

but in many cases a human is still the best judge.

Redundancy of parameters

Sometimes a fit converges slowly or is even stopped with the cryptic error message ‘A singularity

occurred’. This can be caused by badly chosen starting values for fitting. However, this error is often a

consequence of poorly defined or redundant parameters. For example, consider the exponential

function

 y = A exp
–(x–x0)

t0
 + const.

This function has four parameters: A, x0, t0 and const. However, the parameters A, t0 and x0 are not

independent, as it is easily seen when writing (5) in factors:

 y = A exp
x0

t0
 exp

–x

t0
 + const .

The first two factors (A and exp(x0/t0)) both have the same influence on y. A change of x0 can be

compensated by a change of A. These parameters are redundant. When trying to fit them

simultaneously, the fit fails.

Another problem often encountered during fitting is caused by the ‘poor’ definition of a

parameter. Example: If you are trying to fit the data points (x1 = 1, y1 = 2.01), (2, 3.99),

(3, 6.00), (4, 8.02), (5, 9.98), (6, 12.00) to a polynomial of second or higher degree

 y = a0 + a1x + a2x2 + a3x3 + ... ,

you will get a very poor estimation of the parameters a2, a3, ... because your data points

are nearly on a straight line and are sufficiently described by the parameters a0 and a1.

The standard deviations of the coefficients a2, a3, ... will be accordingly large.

The errors of the data set

When using errors (standard deviations) for your data, it is useful to keep some points in mind:

• Multiplying all errors of your data points with a common factor does not affect the results of fitting,

but changes the estimate of the standard deviations or the confidence intervals of the fitted

parameters.

• Changing the relative errors of your data points affects the numerical weight of the data points.

Example: If you have a large number of points in one area (e.g. between x = 1 and 2) and just one

or two points far out (e.g. at x = 50), it is necessary to decrease the error for these ‘lonely’ points if

you want to force the function to come close to them.

• When plotting a curve in a graph with a logarithmic y-axis, a deviation of the curve from a small y-

value appears much larger than the same deviation from a larger y-value. If this astonishes you, it is

probably because your measurement errors are proportional to the measured value. When plotting a

fit on a graph with a logarithmic y-axis, the errors of the yi are often given in percent. This results

130 Fitting

in smaller deviations from points with small y-values. Here is an example of logarithmically plotted

data with fits using percentage errors and constant errors.

A fit with percent errors gives a more satisfying visual agreement between curve and data. Obviously,

for serious data fitting you should always specify the real measurement error you expect for every data

point.

 Defining functions and programs 131

132 Defining functions and programs

9 Defining functions and programs
pro Fit allows you to define functions and programs:

• A function is added to the menu ‘Func’. It behaves like any of pro Fit’s built-in functions and you

can use it for fitting, plotting, etc., see Chapter 5, “Working with functions”.

• A program is added to the menu ‘Prog’. A program performs a sequence of tasks. Programs can be

used for scripting pro Fit.

Both, functions and programs, can be defined in the same syntax, which is based on the Pascal

programming language. In addition to this, programs can be written in Apple Script.

All commands that can be given to pro Fit using its menus, can also be issued through pro Fit’s

program definition language or through AppleScript. You do not need to know much about the syntax

of these “programming languages” in order to do this. The command that corresponds to any user-

action can be generated automatically by switching on “recording”, either in pro Fit, or in Apple’s

Script Editor, or other equivalent scripting utilities.

Programs can be considered to be “macros” that can be used to automate tasks. However, a pro Fit

program can do much more than what you would normally expect a macro to do, such as complicated

calculations and data transformations.

Here is a small list of what functions or programs can do:

• Calculate any kind of numerical value, even if it cannot be expressed in a closed mathematical

formula.

• Access the data in a data window, write results into the results window, use dialog boxes and alert

boxes.

• Execute any command from pro Fit’s menus, open and save files, create and close windows.

• Run fitting operations and predefined numerical algorithms and retrieve their results.

• Create graphs and other drawings in a drawing window using a precise, floating point coordinate

system.

• Access the properties of drawing objects in drawing windows, and mange buttons, check boxes,

popup menus, or other interface elements that can be drawn there.

Note: All the above can also be done from a plug-in – a piece of code generated by your favorite

compiler. If you are used to programming your own code for data or function analysis, you

can consider pro Fit as a big library offering routines for numeric analysis, data input/output

and high resolution graphics. Information on how to create a plug-in is found in Chapter 10,

“Working with External Modules”.

When you are defining your functions and programs within pro Fit, they are translated (‘compiled’)

into native computer code when they are added to pro Fit’s menus. This code can be executed very

quickly by your Macintosh.

Simple programs and functions can be defined very easily and quickly.

Even very complicated programs can be defined without much work by simply recording your

activities using pro Fit’s automatic macro recording feature.

 Defining functions and programs 133

This chapter first gives a short overview on the principles of programming in pro Fit. It then explaines

the automatic macro recording feature, and finally it lists the features of pro Fit’s built-in compiler in

detail. At the end, it explains how to save programs and functions as plug-ins for later use.

Simple examples

Defining functions

Imagine you want to analyze a function of the form

 y = B sin(x) ln(x) + D (8.1)

with the parameters B and D. To define it in pro Fit:

1. Choose New Function from the File menu.

This opens a new, empty function window.

2. Enter the formula of your function in the new window.

In the simplest example, you could simply enter the formula as given above, using a[1], a[2] for the

parameters a

 a[1]*sin(x)*ln(x) + a[2]

3. Click To Menu in the function window or choose Compile & Add To Menu from the
Customize menu.

134 Defining functions and programs

pro Fit analyses the contents of the window. Since you have entered a simple mathematical

expression using the name x, pro Fit assumes that you want to define a function. Your formula is

translated into a Pascal-like function definition, it is compiled and added to the menu ‘Func’.

The function window now shows a minimalists Pascal definition of your function:

The new function appears under the name “User_Function” in the menu ‘Func’. It is automatically

selected and the parameters window shows its parameters a[1], a[2].

After adding the function to pro Fit, you can change its parameters in the parameters window. You can

plot the function, use it for fitting, calculate a table of its values, etc. (To view the function in the

preview window, make sure that the option “Show function” is checked.)

The above method is an abbreviated way for entering functions: you simply enter the function’s

expression and pro Fit translates it into a Pascal function definition before compiling it. In many

situations you will, however, want to write or edit the function definition directly. Therefore, let’s have

a closer look at the minimalist function definition appearing above:

function User_Function;

begin

 y := a[1]*sin(x)*ln(x) + a[2];

end;

The first word of our example is function. It tells pro Fit that the definition of a function follows.

The next word (User_Function) gives the name under which the function will appear in the Func

menu.

 Defining functions and programs 135

The function’s actual definition is given between the keywords begin and end. The function’s value

is calculated and then assigned (by the := operator) to the function output named y. The variable x

contains the function’s default input value and a[1], a[2] etc. are two additional input values that

normally play the roles of function parameters.

a is a predefined array that represent the function parameters (or any additional input value past the

standard x-value). The parameters can be accessed by their index, i.e. a[1], a[2] etc. Instead of

using a[i] for the parameters, you can also use parameter names of your own by declaring them (as

in standard Pascal) in the header of the function

A less minimalist definition for our function could be

function LogSine(B,D:real);

begin

 if x <= 0

 then y := D

 else y := B*sin(x)*ln(x) + D;

end;

which uses two names for the two additional inputs (B and D) and provides a mechanism to take into

account the possibility that the x-value can be netagive. Our sample function above was not defined for

x<=0. It would generate a run-time error if used in calculations with negative x-values. But since the

function converges to y=D for x=0 we can just decide that the output value is D for all negative values

of x.

Note that you can insert additional spaces or lines anywhere between keywords.

The new version of the function (which now has the name ‘LogSine’) shows how you can define

names for the parameters B and D (simply list them between brackets after the function name as

shown) and use the if statement for conditional execution. The if-statement takes the general form

 if condition then do this else do that

‘do this’ is executed if the condition is met, ‘do that’ if it is not met.

If you work with your function more often, you might want to make sure that the Parameter window

shows reasonable default values for the parameters and a short description of what the function does.

Here is a final and more complex definition implementing this (note that texts between curly brackets

(‘{’ and ‘}’) are used as comments and are ignored):

136 Defining functions and programs

function Myfunction(B, D: real);

description

 { text to appear in parameters window }

 'x > 0: y = A sin(x) ln(x) + B',

 'x <= 0: y = B';

inputs

{ names and defaults for the parameters }

 B := 1,active,'B (the amplitude of this function)';

 D := 0,inactive,'D (a constant offset)';

begin

 if x <= 0

 then y := B

 else y := B*sin(x)*ln(x) + D;

end;

When you add this function to pro Fit, its parameters window looks like this:

In the last version of our sample function two additional elements have been added:

• A keyword description followed by two texts between quotes ('...'), which appear at the

bottom left of the parameters window.

• A keyword inputs (in previous pro Fit versions, defaults was used), which is followed by

additional information for each input that appears in addition to x, and takes the form: a[i] :=
value, mode, name, lowLimit, highLimit, where value is the default value of a

parameter, mode its default fitting mode (it can be ‘active’ (i.e. the parameter will be fitted),

‘inactive’ (will not be fitted) or ‘constant’ (cannot be fitted)) and name (its name between

quotes (' ') used in the parameters window). Instead of using a[i] you can also directly use the

name that you declared between brackets after the function name. Using the keyword inputs,

you can also define a range of acceptable values for an input, given in the optional parameters

lowLimit and highLimit. See the detailed description of the inputs keyword, later in this

chapter.

Once you have successfully defined a function and you have added it to the Func menu, you can save it

as a plug-in. A plug-in is a file that contains the computer code for your function and that can be

loaded by pro Fit at start-up, or at any other time. Go to the last section of this chapter for more

information on plug-ins.

 Defining functions and programs 137

Defining programs

Programs are generally used to create or transform data in a data window or for scripting pro Fit

operations. In the following we give some very simple examples of programs.

In a first step, we will write a program that fills the first column of a data window with the powers of

two: 2, 4, 8, 16, etc.

1. Choose New Function from the File menu.

This opens a new, empty function window.

2. Enter the definition of your program in the new window.

Enter the following definition:

program PowersOf2;

var i: integer;

begin

 NewDataWindow;

 for i := 1 to nrRows do

 data[i,1] := 2 ^ i;

end;

Note that a program definition starts with the keyword program followed by its name. After that

we first have a variable declaration for the variable i, which is of type integer.

The body of our program between begin and end starts with the call NewDataWindow, which

tells pro Fit to open a new, empty data window. Then follows a so-called for-loop, which takes the

general form

 for variable := startValue to endValue do statement;

A for-loop executes its statement for all integer values of its variable between startValue and

endValue. If startValue equals endValue, the for-loop is executed only once. If startValue is larger

than endValue, the for-loop is never executed.

The end value in our for-loop is nrRows, nrRows is always equal to the number of rows in the

current data window.

The statement in our for-loop is an assignment (:=) to the array element data[i,1] that

corresponds to the ith data cell in the first column of the current data window. The expression 2^i

stands for 2i (you can also use 2**i instead of 2^i)

3. Click Add in the function window
or choose Compile & Add To Menu from the Prog menu.

The program is transformed into computer executable code (it is compiled) and its name appears in

the at the end of the menu ‘Prog.

4. Choose PowersOf2 from the menu Prog .

The program is executed. It opens a new data window and fills its first column with the desired

values.

138 Defining functions and programs

Our next example program is somewhat more complex. Imagine you have a data window with some

data in the first column. You want to write a program that fills the second column with the square root

of the values of the first column. You want to take some special cases into account:

• If a cell in the first column is negative, the corresponding cell in the second column should be 0.

• If a cell in the first column is empty, the corresponding cell in the second column should be empty

too.

• If any cell in the first column was empty, the program should give the user a warning when it has

finished.

The program which does this task looks like this:

program MakeRoot;

var i: integer; {the row counter}

 doAlert: boolean; {true if a cell}

 {was empty}

begin

 doAlert := false;

 for i:=1 to nrRows do

 if DataOK(i,1) then {if cell not empty}

 if data[i,1]>=0

 then data[i,2] := sqrt(data[i,1])

 else begin

 data[i,2] := 0;

 doAlert := true;

 end;

 if doAlert then

 Alert('Some data was negative');

end;

This program shows some additional features of the definition syntax:

• An additional variable of type boolean has been introduced. A boolean variable can take the

values true or false which can be used in if statements.

• Before accessing the data in a cell, we test if there is really a number in this cell. This is done with

the function DataOK(r,c), which returns true if the cell in row r and column c contains a valid

number. If the cell is empty or if it contains text, it DataOK returns false.

• The innermost if statement (if data[i,2]>=0) has two statements in its else branch. They

are grouped by the keywords begin and end to make it clear that they both belong to the else

statement.

• At the end of the program an if condition checks whether any data was negative. If there were

negative numbers in the input column, the procedure Alert is called. Alert takes one argument,

a string (i.e. a text between quotes). It displays an alert box that shows this string. Here is the alert

box that appears in case negative numbers are found when the above program is executed:

 Defining functions and programs 139

This alert box has two buttons: ‘Stop’ and ‘OK’. If you click Stop, the execution of your program is

immediately aborted. If you press OK, the execution of your program continues. For our sample

program, it will not make any difference if you press Stop or OK: when the program calls Alert, it is

at its end anyway.

You can now add the sample program MakeRoot to the Prog menu (click Add in the function

window). Then prepare a data window with some data in its first column and run MakeRoot (by

choosing MakeRoot from the Prog menu).

A shortcut

As mentioned at the beginning of this chapter, you can abbreviate the definition of a function by

simply entering its expression (using x and the parameters a[1], a[2], etc.) in a function window. When

you click the button “To Menu” or choose “Compile & Add to Menu” from the ‘Customize’ menu, pro

Fit scans the contents of the text window.Compile & Add to Menu If it encounters a simple expression

using x, it assumes that you want to define a function and adds the corresponding Pascal syntax around

your expression.

You can use the same mechanism for defining programs. For example, you can simply enter the

following lines in an empty text window:

 NewDataWindow;

 for i := 1 to nrRows do

 data[i,1] := 2 ^ i;

When you click the button “To Menu” or choose Add to Menu from the 'Customize’ menu, pro Fit

finds that you have entered the body of a program and that you have used the variable i. It therefore

adds the necessary Pascal syntax and then compiles your program. Your complete program will look

like this:

140 Defining functions and programs

Functions with more than one output (multi-valued functions)

It is possible to define a function that has multiple output values. The 'default output value' can then be

specified in the same way that you specify the default input value. Using the corresponding check box

or using the Func menu. The case where a function has only one output is the simplest. Then the single

output value can be set by assigning a value to the name of the function, or to a predefined variable

called y. As an example,

function electricfield:real;

var

 E:real;

Begin

 E:=1/x;

 electricfield := E;

end;

or

 Defining functions and programs 141

function electricfield:real;

var

 E:real;

begin

 E:=1/x;

 y := E;

end;

The predefined variable y to which the output value is assigned becomes a predefined array for multi-

valued functions. To tell pro Fit that a function has multiple output values there are two possibilities:

• Use the 'outputs' statement to declare and initialize the output values array. Example:
 function vectorfield(phi:real):real;
 outputs
 y[0]:=0, 'E (absolute value of the field)';
 y[1]:=0, 'Ex (x-component of the field)';
 y[2]:=0, 'Ey (y-component of the field)';

 var
 E:real;
 begin
 E:=1/x;
 y[0]:=E;
 y[1]:=E*cos(phi);

 y[2]:=E*sin(phi);
 end;

This allows to define, for all output values, the names with which they must be identified in the

parameter window when output values are displayed, or in menus.

• Use var parameters, following the standard Pascal syntax, to declare additional output values:
 function electricfield(phi:real; var Ex, Ey:real):real;
 var

 E:real;
 begin
 E:=1/x;
 electricfield := E;
 Ex:=E*cos(phi);
 Ey:=E*sin(phi);

 end;

Note that, following the pascal convention, the above function has three output values. The “usual”

one specified by the function name plus the two additional ones specified as “var” parameters. The

parameter window uses the names of the “var” parameters for the additional output values and the

name “y” for the output value corresponding to the function name.

Instead of using the names defined in the function header, it is also possible to use the predefined array

for the output values:

142 Defining functions and programs

function electricfield(phi:real; var Ex, Ey:real):real;
var

 E:real;
begin
 E:=1/x;
 y[0]:=E;
 y[1]:=E*cos(phi);
 y[2]:=E*sin(phi);

end;

You can even mix the predefined output value array with the names you defined in the header, even

inside the outputs statement:

function electricfield(phi:real; var Ex, Ey:real):real;

outputs

 y[0]:=0, 'E (absolute value of the field)';

 Ex:=0, 'Ex (x-component of the field)';

 Ey:=0, 'Ey (y-component of the field)';

var

 E:real;

begin

 E:=1/x;

 y[0]:=E;

 Ex:=E*cos(phi);

 Ey:=E*sin(phi);

end;

Selective calculation of output values

In most cases it is not necessary to calculate all output values of a function. The classic example is

when only one of the output values is being plotted in a normal 2D plot. In order not do unnecessary

calculations and to speed up things, pro Fit provides a predefined function – output(i:integer)

– that you can call to find out if a given output value must be calculated. Note that sometimes a

function should calculate more than one output value at the same time, as an example when the output

values are displayed in the parameters window, or when a function is tabulated. The predefined

function output accepts the index of the output value as a parameter and returns true if it must be

calculated:

 Defining functions and programs 143

function electricfield(phi:real; var Ex, Ey:real):real;
outputs

 y[0]:=0, 'E (absolute value of the field)';
 Ex:=0, 'Ex (x-component of the field)';
 Ey:=0, 'Ey (y-component of the field)';
var
 E:real;
begin

 E:=1/x;
 if output(0) then y[0]:=E;
 if output(1) then Ex:=E*cos(phi);
 if output(2) then Ey:=E*sin(phi);
end;

Determining how multiple output values are rendered in the preview window

Input and output values of a function have various properties that can be set by the dedicated functions

SetParameterProperties and SetOutputProperties. These functions can be called by

any pro Fit program or function, and also by a function that wants to set some advanced properties of

ist outputs. One of these properties determines if an output appears in the preview window even when

it is not defined as the default output. To get an idea of what this means, look at one of the predefined

Peaks functions in the preview window.

By using these calls in its initialization routine, a function can determine if and how its outputs must

appear in the preview window, and even set their names there, instead of using the outputs

statement:

144 Defining functions and programs

function electricfield(phi:real; var Ex, Ey, r,h,v:real):real;
var

 E:real;
procedure Initialize;
begin
 SetFunctionProperties(function '', preview groupOutputValues);
 SetOutputProperties(output 0,
 name 'E (absolute value of the field)',

 outputGroup 1);
 SetOutputProperties(output 1,
 name 'Ex (x-component of the field)',
 outputGroup 1);
 SetOutputProperties(output 2,
 name 'Ey (y-component of the field)',

 outputGroup 1);
 SetOutputProperties(output 3,
 name ‘r (distance from the origin)',
 outputGroup 2);
 SetOutputProperties(output 4,
 name ‘h (horizontal displacement)',

 outputGroup 2);
 SetOutputProperties(output 5,
 name ‘v (vertical displacement)',
 outputGroup 2);
end;

begin
 E := 1/x;
 y[0]:=E;
 Ex:=E*cos(phi);
 Ey:=E*sin(phi);
 r:=x;

 h:=x*cos(phi);
 v:=x*sin(phi);
end;

Here, the SetFunctionProperties call is used by the function to assign to itself the property

that its outputs are shown in the preview window whenever they belong to the same group as the

default output. The remaining SetOutputProperties calls give the outputs names that are used in

the parameter window, and assign the outputs to two different groups. Ouputs from the same group are

shown at the same time in the preview window.

On-line help for programming

The introduction given above only scratches the surface and omits to describe many of the possibilities

that you have to determine how a function or program that you define behaves and can be used within

pro Fit. An example of a more advanced feature has been given in the last section. Another example is

the possibility of defining command-key equivalent for calling a program. Or you can also put a

program in a submenu. To find out about all these possibilities and how to use them, the on-line help

 Defining functions and programs 145

provided by pro Fit is the place to go (you can also read on in this chapter but the on-line help is a more

handy tool).

The help menus

 When defining functions and programs, you can use a series of predefined names, functions and

procedures. To help you use them, pro Fit provides a popup menu “Help” in the header of all function

windows.

The “Help” popup menu lists all predefined routines, names, and syntax elements that you can use. The

items are organized hierarchically. It is easy to find an item by moving the mouse over all the different

headings.

In addition to this, the function window provides a popup menu called “Const” that provides a list of

some of the most important constants of nature (thinks like the speed of light, the charge of an electron,

the mass of a neutron, etc.).

When you move the mouse over an entry in the menus “Help” and “Const”, a help tag is shown giving

a short description. When you choose an entry and release the mouse, its definition is pasted into the

function window.

You can enable/disable the help tags for these two menus by choosing the entry “Show Help Tags”

from the popup menu “Help”.

Browsing functions and programs

Navigating a lengthy function or program definition can be difficult. To get a quick overview of your

definition, click the popup menu “Browse” in the toolbar of the function window.

146 Defining functions and programs

The menu shows a list of all functions, procedures and programs defined in the file. Choosing an entry

from this list takes you there.

Finding the definition of a symbol

If you want to find the definition of a symbol, variable or command that appears in a function window,

double-click it while holding down the option key. For example, if a function window looks as follows:

and you want to know how “CreateTextFile” is defined, double-clicking it while holding down the

option key brings up its definition:

 Defining functions and programs 147

This window is part of pro Fiit’s extensive on-line help, which helps in using pro Fit as well as in

programming functions or data transform algorithms. This help is permanently accessible through pro

Fit’s Help menu, and you can browse it at will, or use its “search” to learn about how to use pro Fit and

about the details of various commands.

Automatic Macro Recording

pro Fit can “record” most operations that you perform and generate a Pascal program or an Apple

Script from them. (Open Apple’s script editor to record your activity as an apple script. See chapter 11,

Apple Script, for more information.)

If you do not know how to program a certain action with pro Fit’s definition lagnuage, switch on

recording, perform the action you want to program, and look at the recorded commands.

Each text window has record, play and stop buttons:

148 Defining functions and programs

The record button is the one with the circle in its center, the stop button is the one with the square, the

play button is the one with the triangle.

To record your actions, click the record button. pro Fit will automatically generate a Pascal script for

nearly everything you do. When you have finished recording, click the stop button. Then you can

replay what you did by clicking the play button.

Alternatively, you can use the commands “Start Recording”, “Stop Recording” and “Run” (or “Run

Selection”) from the Customize menu.

If you only want to run a part of a script, first select it and then click the play button (or choose “Run

Selection”) from the Customize menu. If you don’t select a part of the script before clicking the play

button, then the whole script is run. If there are function or program definitions in the midst of the

script, they will be added to pro Fit’s menus.

The recorded commands appear at the current insertion point in the text window. You cannot edit the

text window while it is recording.

You can record new commands at any place inside an existing program definition. Simply position the

cursor where you want the new commands to appear, and click the “record” button.

Syntax of function and program definitions

This section gives a full description of the elements of pro Fit’s syntax for function and program

definitions.

Information on how to define programs is found under “program definition syntax”. Information on

how to define functions is found under “program definition syntax” and under “function definition

syntax”. You need to look under both headings because the function definition syntax is based on the

program definition syntax. Read the sections devoted to programs to obtain an explanation of all the

general features that are available to programs as well as functions.

Program definition syntax

The structure of a program definition is basically identical to that of a program in standard Pascal. It

starts with the keyword program followed by the name of the program and a semicolon. Then you

can optionally define some variables, constants, procedures or functions for your own use. The main

part of the program (where the execution starts) is placed between begin and end at the end of the

program.

 Defining functions and programs 149

program myProg;

the name of the program, myProg, will appear in the Prog
menu.

const c = 3e8;

var u,v: real;

 done:boolean;

optional, definition of constants and variables.

procedure MyProc;

begin

 statements...

end;

optional, definition of a local procedure or function used
by the program.
Note that you can call local procedures recursively.

....
more definitions of functions or procedures can follow
here

procedure Initialize;

begin

 statements...

end;

optional, the procedure Initialize that is called once when
the program is compiled and added to the function menu.
Any initialization of global variables can be done here.

begin

 statements...

end;

the main body of the program where execution starts.
Note the ; after the end.

After the title of the program, you can define constants and variables.

The definition of constants is preceded by the keyword const, which is followed by the name of

each constant, the operator ‘=’ (not ‘:=’), and the value of the constant. Example:

 const c = 3e8;

 startValue = 22;

Once you have defined the value of a constant, you cannot change it anymore.

The definition of variables is preceded by the keyword var, which is followed by a list of variables.

 var u,v: real;

 done:boolean;

 m:matrix[3];

 c:complex;

Note that you can specify the type of each variable (such as real, boolean,complex). If you omit

the type specification, it is assumed that the variable is of type real.

Variables and constants that you define in the head of a program can be accessed by all statements

within the program and the program’s procedures and functions.

You can use any name you like for a constant or variable (as long as it is not yet used for any other

purpose). It can contain letters and digits but must start with a letter. Examples for names are:

myFunc, xx, J0 legal names

150 Defining functions and programs

2ToX illegal (starts with a digit)

then illegal (reserved keyword)

The same rules apply to the names of procedures and functions (see below).

Following the definition of constants and variables, you can (optionally) define local procedures and

functions. The general form of their definition is:

... for a procedure:

procedure MyProc(m,n:real; i: integer);

 variable and constant definitions ...

begin

 statements, separated by semicolons

end;

... for a function:

function MyFunc(m,n:real; i: integer):real;

 variable and constant definitions ...

begin

 statements, separated by semicolons;

 myFunc := return value

end;

In this case, MyProc (or MyFunc) is the name of the procedure (function). The name is followed by a

list of arguments in brackets. If the procedure or function has no arguments, this list (including the

brackets) is omitted. In our examples we have three arguments: m,n and i together with their type

definitions. If you define a function, the declaration of its return type follows after the argument list.

Then follows a semicolon.

After the line defining the name of the function or procedure you can define constants or variables

using the same syntax as described for the program (see above). These items are only known within

this procedure or function.

The statements of the procedure or function follow, enclosed by begin and end;

You can call a procedure or function anywhere after its declaration, like this:

...

MyProc(1.72,3.13,20);

r := MyFunc(1.71,3.14,10);

...

Local functions and procedures can also have var parameters. When you change a var paramter, you

change the value of the corresponding variable of the calling function. Example:

 Defining functions and programs 151

program Test;

 procedure Increase(var a:Real);

 {increase value of a by 1}

 begin

 a := a+1;

 end;

begin

 k := 1;

 Increase(k); {increases k by 1}

 Writeln(k); {writes 2}

end;

If you define a procedure having the name Initialize, it is called automatically whenever the

program is added to the menu. Within Initialize you may want to initialize any variables or print

some information into the Results window. Here is an example:

program DoMyStuff;

var inputColumn:integer;

 {where our data comes from}

procedure Initialize;

 {prints a description of the program and }

 {sets the default value of inputColumn }

begin

 Writeln('This program converts a data column');

 Writeln('into normalized units.');

 inputColumn:=3; {inititialization}

end; {of initialize}

begin {main part of program}

{ask for an input column, default is the one}

{that was set in initialize}

 Input('which column?',inputColumn);

{transform data}

....

end; {of main part}

The above program uses the predefined function Writeln to output text to the results window and the

function Input to ask the user for a column number. All predefined functions are described in pro

Fit’s on-line help.

152 Defining functions and programs

Example

Let us look at an example of a fully functional program:

You have a data window that contains data in the first two columns. The first column contains positive

and negative numbers. You are only interested in the positive numbers and you want to delete all rows

which have a negative number in the first column.

Here is the program:

program EliminateNegatives;

var i:integer;

procedure DeleteRow(r:integer);

 {deletes the row r and shifts up}

 {all following rows}

var m,n:integer;

begin

 for n:=1 to 2 do

 begin

 for m:=r to nrRows-1 do

 if DataOK(m+1,n) then

 data[m,n] := data[m+1,n]

 else ClearData(m,n);

 ClearData(nrRows,n); {clear last row}

 end; {of for loop}

end; {of deleteRow}

begin {main part of program}

 i:=1;

 while i <= nrRows do

 begin

 if DataOK(i,1) then

 if data[i,1] < 0 then begin

 DeleteRow(i); i:=i-1;

 end;

 i:=i+1;

 end; {of while loop}

end; {of main part}

This program tests all numerical values in column 1. This is done in a while loop. A while loop has the

general form

 while condition do statement;

Its statement is executed as long as its condition is true. If you have more than one statement in a

while-loop, they must be enclosed by begin and end.

 Defining functions and programs 153

Our example program executes the while-loop for all rows in the data window (while i <=
nrRows). If a data cell in column 1 and row i contains a negative number, the procedure DeleteRow

is called, which deletes the row i by shifting all following rows up.

The procedure DeleteRow calls ClearData(r,c), which is a built-in procedure of pro Fit.

ClearData(r,c) removes any number from the cell in column c and row r.

In the examples above, we have used the ‘for’ loop and the ‘while’ loop. Let us summarize their use

and introduce the third kind of loop (the ‘repeat’ loop):

Loops

pro Fit supports three kind of loops, two of which we have already seen (for-loops and while-loops).

The third one is the repeat-loop. The loop statements are:

The while-loop

 while condition do statement;

The statement of the while-loop is executed as long as the expression in condition returns true. If more

than one statement should be executed in the loop, the statements must be enclosed by begin and

end.

The for-loop

 for loopVariable := startValue to endValue do

 statement;

A for-loop executes its statement for all integer values of its variable between startValue and endValue.

If startValue equals endValue, the for-loop is executed only once. If the startValue is larger than the

endValue, the for-loop is never executed. If more than one statement should be run in the loop, the sta-

tements must be enclosed by begin and end.

An alternative form of the for-loop is

 for loopVariable := startValue downto endValue do

 statement;

In this for-loop the value of the loop variable is decreased by one after each execution of the loop

statement. The loop is terminated as soon as loopVariable < endValue.

The repeat-loop

The last kind of loop is the repeat-loop. Its general form is

 repeat statement until condition;

In contrast to the while-loop, the statement of a repeat loop is always executed at least once. After the

execution of the statement, the condition is tested. If the condition is true, the loop is terminated, else

the loop statement is executed again until the condition becomes true.

Loop control statements: cycle and leave

You can place the keyword leave into a for-, while- or repeat-loop to exit the loop even if its end-

condition is not yet reached. Example:

154 Defining functions and programs

 for i := 1 to NrRows do

 begin

 if not DataOK(i,1) then

 begin

 Writeln('Empty cell - loop aborted');

 leave; { exits the for-loop }

 end;

 end;

The above example loops through the first column of a data window and does some calculations

(indicated by '....'). If, however, an empty cell is found, the loop is aborted.

You can place the keyword cycle into a for-, while- or repeat-loop to immediately start a new

iteration of the loop. Example:

 for i := 1 to NrRows do

 begin

 if not DataOK(i,1) then

 begin

 Writeln('Empty cell skipped');

 cycle; { goes to next value of i }

 end;

 end;

The above example loops through the first column of a data window and does some calculations

(indicated by '....'). If an empty cell is found, the calculations are skipped and the loop is continued

with the next value of i.

Optional parameter lists

Usually, you pass parameters to procedures and functions using the standard Pascal syntax. For

example, you write

 DrawRect(10, 10, 50, 100);

In other words, you pass a value for each parameter and separate the parameters by commas.

However, some of pro Fit's predefined procedures use an “optional parameter list” for passing values,

for instance

 CloseWindow(window 'Data 1', saveOption dontSave);

In the above example, “window” and “saveOption” are the names and 'Data 1' and dontSave the values

of the parameters that are passed to the procedure CloseWindow. In other words, each parameter has a

name that must be passed in front of its value.

 Defining functions and programs 155

The advantage of this calling convention is that you can omit some parameters (if you want to use their

default values). For example, you can call

 CloseWindow(saveOption ask);

In this example, we have omitted the parameter “window” and use its default value (the front window)

instead.

The pro Fit’s on-line help state which of pro Fit's predefined procedures use optional parameter lists.

Aborting procedures, functions and programs

Use the keyword Halt to immediately end the execution of a function or program. Use the keyword

Exit for exiting from a local function or procedure to the caller.

The following is an example of a program calculating the sum of the presently selected cells in a data

window. The program aborts when the selection contains empty data cells. (Note that it uses the

predefined variables selectLeft, selectRight, selectTop, selectBottom which

return the enclosing rectangle of the currently selected data cells.)

program CalcSum;

var row, col: integer; sum: real;

begin

 sum := 0;

 for col := selectLeft to selectRight do

 for row := selectTop to selectBottom do

 begin

 if not DataOK(row,col) then Halt;

 sum := sum+data[row,col];

 end;

 writeln(sum);

end;

The following program does basically the same as the one above, but the sum is calculated in a local

function, which is aborted by Exit:

156 Defining functions and programs

program CalcSum;

 function SumSelection:real;

 {sums the selected data, returns}

 {-1 if a selected cell is empty}

 var row, col: integer; sum: real;

 begin

 sum := 0;

 for col := selectLeft to selectRight do

 for row := selectTop to selectBottom do

 begin

 if not DataOK(row,col) then begin

 SumSelection := -1;

 Exit;

 end;

 sum := sum+data[row,col];

 end;

 SumSelection := sum;

 end;

begin

 Writeln(SumSelection);

end;

Note: Calling Exit from the main body of a function or program has the same effect as calling Halt.

Predefined constants, functions, procedures, and operators

This section lists the operators and the most important predefined constants that are available in the

definition syntax. An full list of all predefined functions, procedures and constants is found in pro Fit’s

on-line help.

The following are the most important predefined constants:

 (or pi) = 3.141592...

true = 1

false = 0

INF infinity (1/INF=0)

The operators are identical to those that are defined in standard Pascal. In addition, the power operator

(** or ^) has been added. The operators – in ascending order of precedence – are:

 Defining functions and programs 157

= <> <= < > >=

comparison, returning true (1) or false (0)

+ - or add, subtract, logical or

* / and multiply, divide, logical and

**, ^ power (x ** y = x^y = xy)

not logical not

You can change the order of precedence of the operators in the above list by using brackets: ‘(’ and ‘)’.

Note that there are two ways for using the power operator (x**y and x^y). They are equivalent. Use

whichever you prefer.

On some machines, x**y = x^y is calculated as exp(y ln(x)). As a consequence of

this, the x^y may not work for negative x and may be slow. Therefore, you should not

use this notation for calculating small integer powers (for example: use sqr(x) instead

of x**2).

Note for Pascal programmers: ^ is used for the power operator. pro Fit does not know anything about

pointers and ^ is not used for dereferencing.

The order of precedence for the operators is the same as in standard Pascal. But since the

pro Fit definition language does not distinguish between boolean and real expressions

(refer to the next chapter), this order of precedence provides a dangerous pitfall

 a>x and b>y will be compiled as (a > (x and b)) > y !!

Use brackets to clarify what you want:

 (a>x) and (b>y)

Note: In contrast to some other programming languages, all the expressions in a composite logical

expression of the form

 (condition 1) and (condition 2) and (condition 3)

 will be evaluated, even if condition 1 returns false.

Function definition syntax

If you want to define a function of your own to use it for fitting or plotting, you must write a function

definition. The structure of a function definition is the same as the structure of a program definition,

but it can optionally contain additional information about the parameters and the contents of the

parameters window. This additional information is placed right at the beginning of the function

definition.

A function definition starts with the keyword function instead of program. Then follows

(optional) information on the parameters and the parameters window:

158 Defining functions and programs

function myFunc;

the name of the function, myFunc, will appear in the Func-
menu.

function myFunc(ampl , freq: real; var
out1, out2: real);

optional, definition of names that will be used to access
input and/or output values in the function code and as a
default name in the parameters window. Output values
are preceded by the keyword var .

description 'text1','text2';

optional, these two strings will appear in the parameters
window.

parameters 4;

optional, the number of additional (besides the standard x-
value) input values (max. 128)

inputs

a[1]:=1.2,active;

a[2]:=3.0,inactive,'name';

a[3]:=2.0,constant;

a[4]:=1,active,'i',0,INF;

inputs

ampl:=1.2,active;

freq:=3.0,constant;

optional, the default values for the parameters, their
default mode, parameter-window name, lower and upper
limit (see the Chapter 8,Fitting). If you do not define the
defaults for a parameter it will be 0, inactive and limited by
-INF and INF. If you do not define a parameter-window
name for a parameter its default name will be used.
The default name is either the name you define in the
function header (e.g. ampl) or a[i] .

outputs

 y[0]:=0, 'E (absolute value)';

 Out1:=0, 'Ex (x-component)';

 Out2:=0, 'Ey (y-component)';

optional, the default values for the outputs and their name
to appear in the parameter window. If you do not define
the defaults for an output value, its value will by default be
0.
Alternatively, if you do not want to define default values
and names for all outputs of a function, but you merely
want to state that your function has n outputs, simply
assign the constant n to the outputs keyword, e.g.
 outputs = 3;

const

 c = 2.997E8;

optional, the definition of constants as in standard Pascal.

var

 temp: extended;

 myVar,t: integer;

optional, variable declarations as in standard Pascal.

After this, you can (optionally) define your own local procedures and functions.

Then follows the “body” of the function definition between begin and end. In this body, you must

calculate the function’s y-value from its x-value and its parameters. For this, you can use the following

variables:

 Defining functions and programs 159

x

The primary input value variable of the
function

a[1] ... a[n]

The remaining input values (parameters)
of the function. Up to 128 input values can
be used.

y

The output variable, the function s return
value, for single-values functions. It must
be set by your function.

Y[0] ... y[n]
An array holding the output values of a
multi-valued function. y[0] is the function s
default output value.

It is possible to define your own input and output names in the function header and to use your own

names instead of the a[1]...a[n]:

function foo(ampl, freq, phase: real; var result);

begin

 result := ampl*cos(freq * x +phase);

end;

If you do this, input and output values retain their numbering, defined by their sequence when you

define them (ampl, freq, phase). The a[i] remain available as synonims (a[1]=ampl,
a[2]=freq, a[3]=phase) and the indices can still be used in predefined function such as

SetParamName.

Example 1:

You want to define the function:

 y = a1 ln(a2 x2)

Your definition looks like this:

function logSquare(K, Q: real);

begin

 y := K*sqrt(Q*cosh(x));

end;

This is a function in its most simple form. If you work with it often, you may want to assign default

values to the parameters. You will also see that Q should not be negative. You might therefore

improve the above definition as follows:

160 Defining functions and programs

function logSquare(K, Q: real);

inputs

 K := 1, active, 'K (amplitude)';

 Q := 1, active, 'Q (multiplier of cosh)', 0, INF;

begin

 y := K*sqrt(Q*cosh(x));

end;

The first line after the keyword inputs defines the default value, default mode (active means that

it will be varied in a fit) and the name of K that will appear in the parameter window. The second

lines defines the default value, mode and name as well as the lower and upper limit of Q .

Example 2:

You want to define the function

 y = a1 sinc(x–x1) + a2 sinc(x–x2) ,

with sinc(x) = sin(x)/x .

The value of the function sinc is not defined for x=0, but it converges to 1 for x 0. When

calculating sinc, we must test if its argument is 0 to handle this special case.

Since the sinc function is used twice in our example, it makes sense to put it into a local function.

function DoubleSinc;

inputs a[1] := 1,active,'a1';

 a[2] := -20,active,'x1';

 a[3] := 1,active,'a2';

 a[4] := 20,active,'x2';

function Sinc(u:real):real; { sin(u)/u }

begin

 if u=0 then sinc:=1 {0/0 is illegal}

 else sinc:=sin(u)/u;

end;

begin {“body”}

 y := a[1]*sinc(x-a[2]) + a[3]*sinc(x-a[4]);

end;

 Defining functions and programs 161

Special procedures in a function definition

As in a program, the procedures that you define within a function definition can have any valid name

you want. However, there are some reserved names for special procedures (Initialize, Check,

First, Derivatives, Last) that you can define to customize and optimize your function

definition. These procedures are called to perform special actions. For example, one of them

(Derivatives) is called to calculate your function’s partial derivatives. Another (Check) can check

a value that was entered into the parameters window.

The following describes these special procedures. A summary is provided at the end of the section.

Function Check

This procedure is only used to include some advanced features in your function. It can make function

definitions more user-friendly. Check is called each time the user changes an input value in the

parameters window. It can check the input value that was changed and act accordingly. For example, it

can refuse a value if it is not acceptable. It can also recalculate some other input values and cause the

parameters window to be redrawn. Check can use the following predefined variables and constants:

pNumber

The number of the modified parameter

a[1] .. a[n]

The input values as they appear in the parameters window.
They can be checked and/or changed.

mode[1] ..
 mode[n]

The mode of each input, which can be active, inactive
or constant. You can check and/or change the modes.

active, inactive,
constant

These three constants can be used to be compared to or
assigned to mode[i].

check

The function must store its return value in this variable.

ok, bad, update

One of these three constants must be returned in the vari-
able check.

Check must return one of the values ok, bad or update in the variable check to tell pro Fit if it

should accept the new input value and what it should do with the parameters window:

• If check=ok, pro Fit accepts the new parameter.

• If check=bad, pro Fit refuses the new parameter and shows the old one in the parameters

window.

• If check=update, pro Fit accepts the new parameter and redraws (updates) the whole parameters

window. Use this feature whenever you have changed a parameter other than a[PNumber] in the

function check, so that the user can see these changes.

For example your function can have two input values that represent the same value in two different

units of measurement. Check can be used to update the value of one input value when the other input

value is changed.

162 Defining functions and programs

Note for advanced users: Check is not called during fitting. It is called once when

fitting is complete. Don’t use Check for calculating intermediate results for later use in

the evaluation of the function. You won’t notice anything wrong as long as you modify

the values in the parameters window, but your function will not work when fitting.

Always use the procedure First (see below) for calculating intermediate results.

Procedure Initialize

This procedure is used for advanced programming. It is called exactly once after compilation of your

function or program. You can use this procedure to initialize the value of variables or to write some in-

structions into the Results window.

Procedure Derivatives

This procedure is optional. If defined, it is used during fitting with the Levenberg-Marquardt algorithm.

This algorithm uses the partial derivatives of the function with respect to its parameters. If you do not

define the procedure Derivatives, the derivatives are calculated numerically, but this slows down

the fitting process considerably. If you notice that fitting is particularly slow, you should define this

function and at least calculate some derivatives (pro Fit will still calculate numerically any derivative

you don’t define). The procedure derivatives can use the following predefined variables:

x The x-variable, the function s x-value

a[1] .. a[n] The input values of the function.

dyda[1] .. dyda[n]

The partial derivatives. Must be set to dyda[i] := f(x)/ a[i]
for all parameters that are not declared as constant.

Derivatives can set the values dyda[i] for some or all of your function's parameters. If you

don't set a value, it will be calculated numerically.

Whenever a function is used by pro Fit, a call to the procedure Derivatives is always preceded by a

call to the main part of the function. Therefore you may use temporary results from the main part of the

function by storing them into global variables. This decreases the number of calculations your function

must perform and makes fitting faster.

Example: You want to fit the function y = a1.sinh(x), the partial derivative of which is y/ a1 =

sinh(x). Calculating sinh(x) can take a lot of time, especially when you are working on a slow

computer. To avoid calculating expressions twice, you can save temporary results in the main part of

the function to use them later in the procedure Derivatives:

 Defining functions and programs 163

function MySinh;

var t: real;

procedure Derivatives;

begin

 dyda[1] := t;{ use t calculated in body}

end;

begin {the function’s body}

 t := sinh(x); {save sinh for derivatives}

 y := a[1]* t;

end;

Procedure First

This procedure is used for advanced programming. It is called whenever the input values of a function

have been changed – before the body (main part) of the function is called. The body of a function will

never be called without first having been called beforehand.

The procedure first can use the following variables:

a[1] .. a[n] The parameters of the function.

The procedure First is mainly used for accelerating calculations that do not depend on the input

value x. This can make a fit considerably faster. First should calculate all expressions that appear in

a function but that do not depend on x:

 To calculate the mean deviation R
 during fitting, pro Fit calculates the function for each data point

(xi, yi). This may involve up to several thousand executions of the body of the function definition.

If your function definition contains expressions that do not depend on the value of x (such as

sin(a[2]–a[3])), they will still be recalculated for each new value of x, wasting a lot of time. You

can evaluate these expressions in the procedure First and store their values in variables used by

the main part of the function.

First only works as described when the default input value of the function is the

standard x-value. If you set any other input to be the standard input value, then pro Fit

will call First every single time the body of the function needs to be calculated.

Always use the standard x-value as the default input whever you need to optimize the

speed of a function using the possibilities provided by First.

Another use of the procedure First is to perform some task before pro Fit starts to use a function.

This is less common for functions defined inside pro Fit but it is often used when defining plug-ins (see

Chapter 10) that need to allocate and deallocate memory only used while a function is running. The

following is a small example of this particular use of First that also demonstrates a possible use of

the procedure last:

164 Defining functions and programs

function Foo;

var firstTime: boolean;

 data11: extended;

 sinDiff: extended;

 multiplier: extended;

procedure Initialize;

begin

 firstTime:=true; {initialize to true}

end;

procedure First;

begin

 if firstTime then

 begin {the statements in this block are }

 {executed only once, before any other}

 {function call.}

 firstTime:=false;

 data11:=data[1,1];

 {perform here other calculations that}

 {do not depend on parameter values}

 {and do not depend on x}

 end;

 sinDiff:=sin(a[2]-a[3]);

 multiplier:=data11*a[1];

 {perform here other calculations that do not}

 {depend on x but depend on the parameter}

 {values.}

end;

procedure Last;

begin {finished using function.}

 firstTime:=true; {reset firstTime to true }

end;

begin {the main part of the function.}

 y := multiplier * sin(x)/sinDiff;

end;

The above example uses the procedure Last:

Procedure Last

This is also a procedure used for advanced programming. It is called when all calculations, fitting, etc.

are completed. It is the last piece of function code called by pro Fit before returning control to the user.

Last can be used to clean up, to make final calculations, or to re-initialize some variables to their

starting values, as is shown in the example above. Last can also be used to print some special messages

or results in the results window or to alert the user of some event. For example, you can let your

machine beep when fitting is finished:

 Defining functions and programs 165

procedure Last;

begin

 beep;

end;

Summary

The following table summarizes the special procedures listed above:

name called when predefined variables and constants

Check whenever parameters are

changed by user
pNumber

a[1] .. a[n]

mode[1] .. mode[n]

active. inactive, constant

check, ok, bad, update

Initialize once after compilation a[1] .. a[n]

First whenever input values are

changed (e. g. during

calculations)

a[1] .. a[n]

Derivatives during fitting, after calling

the function’s main part
x, a[1] .. a[n]

dyda[1] .. dyda[n]

Last when calculations are

through
a[1] .. a[n]

function’s main

part

during fitting and other

calculations
x, y, a[1] .. a[n]

Note that in addition to the specially predefined variables and constants, all procedures (as well as the

function’s main part) can use the general predefined variables, constants, functions and procedures

listed in pro Fit’s on-line help.

166 Defining functions and programs

General comments about programming

Types

The following basic types are supported:

real real is the standard type for floating point numbers. It has at least 64Bit accuracy.

(optional, but equivalent type: extended)

integer integer is the standard type for integer numbers. It has at least 32Bit accuracy. (optional,

but equivalent type: longint)

string string is the type for strings. It is at maximum 255 Bytes long.

char char is the type for single characters.

boolean boolean is the type for booleans. It takes the values true or false.

complex complex is the type for complex numbers. It consists of two real values, the real and the

imaginary part.

vector[n] vectorn] is the type for a vector with n complex elements. 2 n 4.

The i-th element of a vector v can be accessed using v[i]

matrix[n] matrix[n] is the type for matrices with nxn complex elements. 2 n 4.

The element in the i-th row and the j-th column of a matrix m can be accessed using

m[i,j]

Note: pro Fit 6 does not distinguish between real, integer and Boolean types. All these types are

implemented as 8 byte floating point numbers.

1. Simple numeric types:

The boolean value true is represented by the real value 1.0 and false by 0.0. All non-zero values are

interpreted as true in a boolean expression.

Most Pascal compilers on the Macintosh distinguish between the floating point types extended, double

and real, which have different accuracy. All simple number types of the pro Fit definition language

have extended accuracy. The accuracy and range of numerical values in pro Fit is given in Appendix C.

2. Complex type:

The Complex data type is used to represent complex floating point values having a real and an

imaginary part. Example:

 Defining functions and programs 167

program ComplexTest;

 var c: Complex;

begin

 c := -1;

 writeln(sqrt(c));

end;

The above program recognizes that sqrt is called with a complex argument. Therefore, a complex

version of the square root function is used, which can handle sqrt(-1). The output of the above program

is:

 0.000 + i * 1.000

Type conversion from real (or other simple numeric types) to complex is automatic. For converting

complex numbers to real, use one of pro Fit's predefined functions, such as abs, phase, re, im

(see below). To define complex numbers, use the predefined function compl or the predifined

constant ii, which fulfills sqr(ii)=-1.

All predefined functions in pro Fit, such as sin, cos, gamma, erf, etc. automatically become

complex valued functions if they notice that their argument is a complex number, and return complex

numbers as a result.

pro Fit expressions of the complex type can be used with all mathematical operators and with all

mathematical functions. When the type of a parameter is complex, the function will recognize it and

return an appropriate complex or real result. The following are the few special functions that only make

sense for complex numbers.

conj returns the complex conjugate of a complex number

Re, Im return the real and imaginary part, respectively, of a complex

number

phase returns the phase of a complex number r ei

abs returns the absolute value rof a complex number r ei

compl used to define a complex number. compl(x,y) = x + i y

2. Matrix and Vector types:

The Matrix and Vector data types are used to represent 2 dimensional and 1 dimensional

arrangements of complex floating point values.

168 Defining functions and programs

program MatrixTest;

 var m: matrix[2];

begin

 m := matr2(1,2,ii,-ii);

 writeln(sqr(m));

end;

The above program recognizes that sqr is called with a matrix argument. Therefore, a matrix version of

the square function is used. The output of the above program is:

 {{1.00 + i * 2.00,2.00 - i * 2.00},{1.00 + i * 1.00,-1.00 + i * 2.00}}

Type conversion from real or complex to matrix or vector. To define matrices, use the predefined

function matr2, matr3, matr 4.

All mathematical calculations will autmoatically recognize matrix and vector types, and interpret them

correctly when it makes sense.

The following are some special functions to be used on vectors and matrices:

determinant returns the determinant of a matrix

transp returns the transposed matrix

adjoint returns the adjoint matrix

outer returns the matrix defined as the outer product of two vectors.

matr2,matr3,matr4 used to define a matrix, these routines take 4,9, or 16 complex

parameters, respectively.

vect2,vect3,vect4 used to define a vector, these routines take 2,3, or 4 complex

parameters, respectively.

 Defining functions and programs 169

pro Fit expressions of the matrix or vector type can be used with normal mathematical operators

and functions when it makes sense. Mathematical operations between matrices and matrices, matrices

and vectors, vectors and vectors, and matrices/vectors with numbers do the expected thing. In the table

below, "m" stands for any matrix[n] type, "v" for any vector[n] type, and "c" stands for any

complex or real number.

m*m matrix multiplication, result is a matrix.

m*v matrix times vector, both must have the same dimension, result is a vector

m*c, v*c multiplication by a scalar. Every matrix or vector element is multiplied by c.

1/m this is the inverse of the matrix m. Produces a run-time error if the matrix

cannot be inverted. 1/m = adjoint(m)/determinant(m)

m1/m2 matrix division. m1 is multiplied with the inverse of m2.

v1*v2 scalar product between two vectors. The result is a number.

abs(v) the absolut value of a vector. The result is a real number.

sqr(v),sqr(m) translates to v*v, and m*m, respectively

conj(v), conj(m) the complex conjugate is obtained by taking the complex conjugate of each

individual element.

compl used to define a complex number. compl(x,y) = x + i y

The following is an example of a program doing some matrix and vector calculations:

program SomeMatrixAndVectorCalculations;

var m1,m2: matrix[2];

 mm,mm2: matrix[3];

 v1,v2: vector[2];

 c: complex;

begin

 mm1:=matr3(1+ii*2,2*ii,3,4,5,6,7,8,9);

 mm2:=1/mm1;

 m1:=matr1(1,2,3,4);

 m2:=sqr(m1*4.2)+3.3;

 v1:=vect2(1,2+ii);

 v2:=m2*v1;

 c:=v1*v2;

end;

{two 2x2 matrices}

{two 3x3 matrices}

{two vectors of length 2}

{a complex number}

{define the elements of the 3x3 matrix mm1}

{mm2 is now the inverse of mm1}

{define the 2x2 matrix m1}

{m2 is calculated from m1}

{define the vector v1}

{matrix multiplication of v1 gives v2}

{c is the scalar (dot) product of v1 and v2}

4. String and char types:

Use the type Char for representing simple characters, String for representing strings of up to 255

characters. Example:

170 Defining functions and programs

program StringAndCharTest;

 var c: Char;

 s: String;

begin

 c := 'x';

 s := 'hi there';

 writeln(c); {writes "c"}

 writeln(s); {writes "hi there"}

 s := s + ', Joe'; {s now is "hi there, Joe"}

 c := s[2]; {c now is "i"}

end;

Conversion between Strings and Chars is automatic. For conversion between Char (ASCII values) and

Integer use the functions Ord and Chr. For conversions between Strings and numbers, use

NumberToString and StringToNumber.

To access the n-th character in a string s, use s[n]. In other words, strings are arrays of type char.

The following is a list of the most important functions for working with strings:

Length Returns the length of a string.

Pos, Delete Find/ delete a sub-pattern in a string

UpperString,
LowerString

Convert between upper and lower case strings.

See pro Fit’s on-line help for a complete list.

Arrays

pro Fit allows the definition of one-dimensional arrays. The following syntax is used:

 var name: array[minIndex..maxIndex] of type;

Where name is the name of the array, minIndex is its minimum index, maxIndex is its maximum index,

type its type. Since types are ignored by pro Fit, you can omit "of type" in the declaration.

To access an array, use the syntax:

 name[index]

Example:

 var arr1: array[1..10] of real;

 arr2: array[0..100];

 i

 ...

 for i := 1 to 10 do arr1[i] := 0;

 arr2[33] := 22.1;

Note: the maximum size of all variables in a variable list is limited to 32 kBytes. This limits the size of

an array to about 2700 entries for the FPU version of pro Fit, to about 3200 entries for the non-FPU

version, and to about 4000 entries for the Power Macintosh version.

 Defining functions and programs 171

Multi-dimensional arrays are not supported.

Note that arrays are a general purpose object, and should not be confused with the built-in vector types

that only support vectors of length 2, 3, and 4, and that are mainly used in conjuction with the matrix

types to perform matrix and vector operations.

Bit operations

BitAnd, BitOr, BitXor, BitNot logical bitwise operations: and, or, exclusive or, not

BitShift, BitClr, BitSet,

BitTst

functions to handle bit-arrays

Data processing

Statistics run statistical analysis, get results

Sort, ReduceData, BinData sort, smooth or reduce data or prepare data for histograms

FFT, InverseFFT FFT and inverse FFT

Transform general data transfomations

Transpose transposing rows and columns

172 Defining functions and programs

Accessing the data window

data[i,j],

DataOK,

ClearData,

TestData*, SetData*, GetData*

an array and some routines for accessing the data in the current

data window

GetCell, SetCell setting and reading cell contents, including text-cells.

SetDefaultCols,

SetDataWindowProperties,

GetDataWindowProperty

set the default x, y, x, and y columns and the number of columns

and rows in the current drawing window.

xColumn, yColumn, xErrColumn,

yErrColumn

the column numbers of the x, y, x, and y columns in the current

data window

NrCols, NrRows,

SelectLeft, SelectTop,

SelectRight,

SelectBottom

GetSelection*

information on the selection area and the size of the current data

window

SelectCell, SelectRow,

SelectColumn, RowSelected,

CellSelected

set the selection and check if a single cell or a row is part of a

(possibly discontinuous) selection.

SetColumnProperties,

GetColumnProperty,

GetColName, SetColName,

GetColType, SetColType,

SetColWidth, ColEmpty

obtain and write titles of single columns and other column

characteristics.

GetDefaultData*,

GetColHandle*,

SetColHandle*

obtain column data in a single step from external modules.

All the above calls access the current data window. By default, the current data window is the

frontmost data window. You can make another data window the current data window by calling

SetCurrentWindow(windowID) with windowID being the window ID of the desired data

window.

Input and output

Input, SetBoxTitle displays a dialog for entering numerical values

Ask, Alert show alert boxes

Write, Writeln these procedures write into the results window

CreateTextFile,

CloseTextFile,

WriteToTextFile

open and close text files, and redirect the output of the write, writeln

functions to a text file.

 Defining functions and programs 173

Drawing

SetLineStyle, SetLineColor,

SetFillColor, SetFillPattern,

SetDataPointStyle,

SetBGDataPointStyle

SetArrowStyle, SetTextStyle

set the style of future drawing calls

MoveTo, LineTo, Move, Line,

DrawLine

produce line drawings in the drawing window.

OpenPoly, ClosePoly collect line-drawing calls to define a polygon

DrawLine,DrawDataPoint,

DrawPICT*, DrawRect,

DrawEllipse, DrawArc,

DrawText, DrawNumber

create single drawing objects in the current drawing window.

GroupBegin, GroupEnd group drawing objects.

DisableDrawingUpdates inhibit updates in the current drawing window until a program is

finished.

GetSelectionBounds find the rectangle corresponding to the boundaries of the current

selection in the current drawing window

GetClickedCoord find the last clicked point in the current drawing window.

NewShape, DeleteShape,

ShapeExists, SelectShape,

SetShapeProperties,

GetShapeProperty

generic routines for creating, checking, changing and deleting any

type of shape in a drawing window. (Every object in a drawing

window, e.g. rectangles, groups, graphs, legends, etc, is a shape.)

Unless explicitly mentioned in the definition, all the above calls access the current drawing window.

By default, the current drawing window is the frontmost drawing window. You can make another

drawing window the current drawing window by calling SetCurrentWindow(windowID) with

windowID being the window ID of the desired drawing window.

The drawing routines work on a coordinate system that has its origin on the top left of the paper. Units

are points (1/72 of an inch).

The following program creates a “bull's eye” at the point where you last

clicked in the drawing window:

program BullsEye;

 const radius = 40; step = 8;

 var x0, y0, t:real;

 begin

 GetClickedCoord(x0, y0);

 GroupBegin;

 t := step;

 while t<=radius do

174 Defining functions and programs

 begin

 DrawEllipse(x0-t,y0-t,x0+t,y0+t);

 t := t+step;

 end;

 MoveTo(x0-radius*1.1, y0);

 LineTo(x0+radius*1.1, y0);

 MoveTo(x0, y0-radius*1.1);

 LineTo(x0, y0+radius*1.1);

 GroupEnd;

end;

The drawing routines accept floating point numbers as parameters. pro Fit uses a precise floating point

coordinate system for drawings, and drawings created from a program will print at the highest

resolution on all output devices.

Plotting in a graph

PlotData, PlotFunction plot a data set or a function.

SetLineStyle, SetLineColor,

SetFillColor, SetFillPattern,

SetDataPointStyle,

SetBGDataPointStyle

set the line style (line thickness, color...) of future line-plots and the

style of future data points.

SetCurveFill, SetEBarStyle set the filling options of plots and the appearance of error bars for

the next curve or data set added to the current graph.

OpenCurve,

CloseCurve, OpenDataSet,

CloseDataSet

start/end the definition of curves or data sets for the current graph

AddDataPoint, DrawDataPoint add a data point (possibly including error bars) to the current data

set.

MoveTo, LineTo, Move, Line define a curve in the current graph.

All the above calls access the current graph. To make a graph the current graph, double-click it while

holding the command key down. From a program, you can use the call SetCurrentGraph to make

a graph the current graph.

 Defining functions and programs 175

The following is a small example program drawing a Lissajous figure in the drawing window:

program Lissajous;

var xmin, xmax, ymin, ymax;

 centerH, centerV, {center of the figure}

 radiusH, radiusV; {and its radius}

 angle;

begin

 xmin:=1;xmax:=3;

 ymin:=2;ymax:=5;

 CreateNewGraph(xmin,xmax, ymin,ymax, false,false);

 centerH := (xmin+xmax) / 2;

 centerV := (ymin+ymax) / 2;

 radiusH := (xmax-xmin) * 0.4;

 radiusV := (ymax-ymin) * 0.4;

 SetLineStyle(1,2);

 OpenCurve('Circle');

 MoveTo(radiusH+centerH, centerV);

 angle := 0;

 while (angle <= 2*pi) do

 begin
1.00 1.50 2.00 2.50 3.00

2.0

3.0

4.0

5.0

 LineTo(radiusH*cos(3*angle)+centerH, radiusV*sin(2*angle)+centerV);

 angle := angle + pi/40;

 end;

 CloseCurve;

 SetLineStyle(1,1);

end;

Creating and accessing graphs

SetNewGraphRect sets the default size and position of graphs created with

CreateNewGraph.

CreateNewGraph creates a new graph in a drawing window.

GetCurrentGraph,

SetCurrentGraph, GetNextGraph

obtain a unique identification number for a graph and use it to

access different graphs.

176 Defining functions and programs

Editing the current graph

SetGraphAttributes set various options that determine the appearance of the current

graph.

SetLegendProperties set visibility, position and size of the legend of the current graph.

GetGraphFrame, SetGraphFrame get/set the position and size of the current graph.

GetGraphCoordinates returns the ranges of the main axes in the current graph

SetRange, MakeTicks,

SetLabelsFormat,

SetAxisPosition,

SetAxisAttributes

change the range, ticks, position, labels format, and various

drawing options for the current axis.

MakeNewAxis, GetCurrentAxis,

SetCurrentAxis, DeleteAxis

create/kill coordinate axes in the current graph and change the

current axis used to define a new curve or data set.

ClearTicks, ClearLables,

AddTick, SetLabel,

SetLabelText

define a custom list of tick marks and/or labels.

All the above calls access the current graph. To make a graph the current graph, double-click it while

holding the command key down. From a program, you can use the call SetCurrentGraph to make

a graph the current graph.

Some of the above routines use or change the axes of a graph. They access the current x-axis or the

current y-axis. To make an axis the current x-axis, call SetCurrentAxis(xAxis,i), where i is

the number of the axis (SetCurrentAxis(xAxis,2) sets the current x-axis to X2). To make an

axis the current y-axis, call SetCurrentAxis(yAxis,i).

Calls that work on the current axes are SetAxisPosition, SetLabelsFormat, etc. The

following code changes the position of the X2 axis of the current graph:

 SetCurrentAxis(xAxis,2); {2nd x-axis}

 SetAxisPosition(xAxis,0.5);

Setting default parameters

SetParameterProperties,

GetParameterProperty

Set and retrieve the value, name, limit and mode of a parameter

This routine is usually called in the procedure Initialize of a function. It allows to set the settings

of a parameter that are given in the Parameter window.

Example: SetParameterProperties provides an alternative to the inputs statements (for

external modules, it provides an alternative to setting the various default values and names by hand).

 Defining functions and programs 177

function foo;

 procedure Initialize;

 begin {initialization of param values, etc. }

 SetParameterProperties(param 1,

 value sin(pi/4), mode paramActive,

 name 'pi',min 0, max inf);

 end;

begin {function definition}

 y:=a[1]-sin(x);

end;

Using other functions or programs

CallFunction,

CallProgram

call a function or execute a program.

SetFunctionParam,

GetFunctionParam,

GetFunctionParamMode,

GetFunctionParamName

GetNumFunctionParams

access other functions parameters.

SetFunctionProperites

GetFunctionProperty

SetProgramProperties,

GetProgramProperty

get and set function and program options, hide/show function in

preview window

GetFunctionName get name of current function

SelectFunction,

DeleteFunction, DeleteProgram

select or delete a function or program

GetGlobalData, SetGlobalData passing data between programs and/or functions

LoadParameterSet,

SaveParameterSet,

UseParameterSet,

DeleteParameterSet,

AddParameterSet

controlling the parameter set menu

AddCommand add a command to the Prog menu

AttachProgram attach a program to a drawing window

The following example program copies the active parameters of the current function to the first column

of the current data window. It also calls a function called ChangeUnit to calculate new parameter

values that it stores in the second column. Before using ChangeUnit, it sets the value of its first

parameter to zero.

178 Defining functions and programs

program CopyParams;

var i:integer;

 pa:real;

begin

SetFunctionParam('changeUnit',1,0.0);

for i:=1 to GetNumFunctionParams('') do

 if GetFunctionParamMode('',i)=active then

 begin

 pa:=GetFunctionParam('',i);

 data[i,1]:=pa;

 data[i,2]:=CallFunction('ChangeUnit',pa);

 end;

end;

Numerics on functions

Integrate, TabulateIntegral,

Derivative

calculate the integral and the derivative of a function

Roots, TabulateRoots calculate roots

Fit set fitting, below.

Optimize, Extrema,

TabulateExtrema

find extrema of a function by varying its x-value and/or its

parameters

Tabulate tabulate functions

Fitting

Fit runs a fit.

GetResult retrieves the results.

 Defining functions and programs 179

The following example runs a fit and prints some of the results:

program DoFit;

 var i, nrParams:integer;

begin

 Fit(function Sin, algorithm levenberg, xColumn 1,

 yColumn 2);

 Writeln('chi squared: ', GetResult(chiSquared));

 nrParams := GetResult(chiSquared);

 Writeln('number of parameters: ', nrParams);

 for i := 1 to nrParams do

 writeln(' ', GetResult(fittedParameter, i));

end;

Using Windows and Documents

NewDataWindow,

NewFunctionWindow,

NewDrawingWindow

open a new data, function, or drawing window

GetWindowID obtain a unique identification number for a window from its title

FrontWindow, FrontmostWindow obtain the ID of the document window in front of all others

GetWindowType, check if a window is a drawing window, a data window, or a

function window.

SetCurrentWindow,

GetCurrentWindow, NextWindow

change the window currently used for program input/output.

GetWindowTitle, access the title of a window.

SelectWindow Bring window in front of all other windows

OpenFile open a document and put it inside a new window

SaveWindow save a window's contents into an existing or a new pro Fit

document

GetFileDirectory

SelectDirectory

SetDefaultDirectory

Get the directory where a given file resides.

Select a directory from a dialog box.

Set the default directory used to save files without a full path name.

CloseWindow close a window.

DataImportOptions,

DataExportOptions

set the format for loading and exporting text files

SetWindowProperties,

GetWindowProperty

set or retrieve the info-text, size, title, position, etc. of a window.

Compile, CompileText, DoScript compile the definition of a function or program

180 Defining functions and programs

PageSetup, Print specify document format and print

Note: Windows are usually accessed by window ID. A window ID is a unique long integer number

assigned to each window. You can obtain a window ID by calling GetWindowID,
FrontWindow, FrontmostWindow, GetCurrentWindow. The following example sets the

name of the frontmost data window to “favourite data”:

program SetWindowName;

 var windowID:integer;

begin

 windowID := FrontmostWindow(dataType);

 SetWindowProperties(window windowID, name

 'favourite data');

end;

Note: The Results, Parameter and Preview windows always have the same window ID:

 Results: window ID = –1

 Parameters: window ID = –2

 Preview: window ID = –4

The window IDs of data, text and drawing windows are always larger than 0.

String and character manipulation

Ord, Chr convert between (real) ASCII codes and characters.

Length returns the length of a string.

Delete deletes parts of a string.

Pos finds a pattern in a string.

InsertString inserts a string into another at a selectable position

CopyString copies a substring from a given string

UpperString, LowerString converts between upper- and lower case strings.

NumberToString,

StringToNumber

convert between numbers and strings.

Tags

Tags are pieces of data that can be attached to a window, a program or pro Fit itself. A tag is identified

by its name and its value can either be a string or a number. Tags are primarily used for passing data to

or between programs/functions, for attaching custom data to windows or to pro Fit. Tags are identified

by the object they belong to (a program, function, window, or pro Fit itself) as well as by their name.

GetTag, SetTag get and set individual tags.

DeleteTag deletes a tag.

 Defining functions and programs 181

Example:

SetTag(window 'myWindow', tag 'tag 1', value 13); {saves the tag}

GetTag(window 'myWindow', tag 'tag 1', value x); {reads the tag to x}

From Apple script, you can use

get value of tag "tag 1" of window "myWindow"

Getting and Setting "Properties" of various pro Fit objects

pro Fit 5.5 supports a general mechanism to retrieve or set various properties of various objects, such

as the coordinates of shapes in a drawing window, the title or size of a window, etc. The following

routines provide access to the properties of drawing shapes, windows, function and programs, and pro

Fit itself.

182 Defining functions and programs

SetShapeProperties,
GetShapeProperty

generic routines for checking, and changing any type of shape in a

drawing window. (Every object in a drawing window, e.g.

rectangles, groups, graphs, legends, etc, is a shape.)

SetWindowProperties,
GetWindowProperty

set or retrieve the info-text, size, title, position, etc. of a window.

SetDataWindowProperties,
GetDataWindowProperty

get and set the number of columns and rows in the current drawing

window.

SetFunctionProperties
GetFunctionProperty
SetProgramProperties,
GetProgramProperty

get and set function and program options, hide/show function in

preview window

SetOptions

GetOption
set and retrieve various options of pro Fit.

SetParameterProperties
GetParameterProperty

set and retrieve the value, name, limit and mode of a parameter.

Miscellaneous auxiliary routines

Random returns a random number between 0 and 1.

Invalid checks if the result of a calculation is a valid number.

TickCount return the number of ticks (1/60 seconds) since start-up.

GetDateTime,

DateString, TimeString

return today's date and time, either as a number of seconds since

1.1.1904 or as strings.

NumToDateTimeStr,

DateTimeStrToNum

convert data & time numbers (seconds since 1.1.1904) into data &

time strings and vice versa.

NumToRelTimeStr,

RelTimeStrToNum

convert relative times (seconds) into relative time strings and vice

versa. A relative time can be the difference of two dates.

Beep lets your computer emit an alert sound.

SpeakString lets your computer speak out loud a text string.

Button, KeyPressed check the mouse button and the keyboard

GetClickedCoord find the last clicked point in the current drawing window.

MarkedX, MarkedY,

GetMarkedCoord

find the position of coordinate markers in the preview window

Undo, Cut, Copy, Paste,

Clear, SelectAll

execute edit menus

DoMenu execute a menu command

Capture redirect output of results window to file

SetWaitTitle, SetWaitText set the text displayed in pro FIt's progress window, shown during

lengthy operations.

SetOptions, GetOption set and retrieve various options of pro Fit.

 Defining functions and programs 183

The compiler

When adding a definition to the list of functions or programs of pro Fit, the definition text is translated

into machine code that can be executed by your computer. This results in a very fast execution speed of

programs and functions.

functions

y := a[1]*sin(x)

programs

for i:=1 to 10 do
 data[i,1] := 0;

compiler

00FA 2CC3
3008 299S
8001 FF29

code

The translation of your definitions into machine code is carried out when you choose Add to Menu

from the Prog menu or if you click the button "Add" in the toolbox of the function window.

Any changes that you make to your definition after compilation will not affect the function or program

as it was added to pro Fit’s menus. To update your changes, you must choose Add to Menu again.

Comparison to standard Pascal

The programming language used to define functions and programs in pro Fit is closely related to the

Pascal programming language. However, to keep it simple and to allow the generation of fast code,

some restrictions are present. However, there are also some extensions with respect to standard Pasca.

The most important differences to standard Pascal are:

• You cannot define your own data types.

• All numeric types (except complex) are interpreted as floating point numbers. Boolean expressions

are evaluated as floating point numbers (a 0.0 representing false, any non-zero value

representing true). No records, structures, or pointers are supported.

• Arrays are one dimensional.

• Case statements are not supported.

• Nested declarations of functions or procedures are not supported.

• Optional parameter predefined procedures and functions are supported.

• A general purpose complex type is supported.

• General purpose matrix and vector types are supported.

184 Defining functions and programs

External functions and programs

Even though pro Fit’s definition language is very powerful, it does not offer the full versatility of a

special purpose programming language. It only supports one dimensional arrays(except data[i,j]),

records, pointers, etc. In addition, it does not support access to the Macintosh toolbox routines. If you

do need any of these features or if you want to write a large program or function for pro Fit where

execution speed is crucial, you should write your definition in any compiler of your choice and add the

generated code to pro Fit. This process is called ‘writing a plug-in’. See Chapter 10, “Working with

plug-ins” for details.

Debugging Window

pro Fit provides a powerful debugging environment for the development of your programs and

functions. For using this environment, check the option "Debug" at the top of its window. When you

run the program or function, its debug window will show up:

Now, you can step through your program, view and modify its variables, set breakpoints, etc.

 Defining functions and programs 185

Initially the program stops at the first line of code that is executed. (Note: Some parts of your program

may already be called right after compilation, such as the procedure Initialize. In this case, the

debugging window will come up right after compilation to let you debug these parts of your code.)

The debug window has four parts:

- At the very top, there’s a button bar. The significance of each button is explained below.

- At the top left, the “Calling sequence” is shown. It shows through what chain of procedures and
functions pro Fit went in order to reach this particular point in your code. Note that you may step
through more than one of your programs and/or functions, in the case they call each other.

- At the top right, the variables that are valid at this point are displayed. You can watch and modify
their values. Just double-click a value to change it. Clicking onto the small triangles lets you view
the elements of arrays and matrices.

- At the bottom, the source of the program or function is displayed, with an arrow showing the
current location.

The buttons at the very top let you control operation of the prosecution of your code:

- Click Step Into or Step Over for advancing one step in your code. When you click Step Into and
the next step is a local function or a procedure, pro Fit steps into this procedure and stops at the first
instruction there. If you click Step Over and the next step is a function or procedure, pro Fit will
execute it and stop again right after. If the next step is not a function or procedure, Step Into and
Step Over just advance by one step.

- Click Step Out if you are in the midst of a local function or procedure and you want pro Fit to stop
when execution returns from this function or procedure, i.e. you do not want to stop again until the
function or procedure is terminated.

- Click Run to continue operation to the next breakpoint or (if there is no more breakpoint) to the
end of your code.

- Click Kill to abort execution of your function or program.

You can set “breakpoints” by clicking into the left margin of the source code in the debug window.

Red dots mark the breakpoints. To remove a breakpoint, click it again. When you run a program or

function and pro Fit encounters such a breakpoint, execution is interrupted and the debug window

comes

Using pro Fit plug-ins

After you have added a function or program to the menus, you can save its compiled code as a separate

file for later use. This file is called a plug-in.

You can also create plug-ins in an external compiler. pro Fit comes with a set of plug-ins for different

tasks. You can use them to add functionality to your copy of pro Fit according to your needs. See

Chapter 10, “Working with plug-ins” for an explanation on how to build plug-ins.

This section explains how to use such plug-ins.

186 Defining functions and programs

Saving functions and programs

To save a function or program as a plug-in, choose Save

as Plug-In from the Customize menu to see a submenu

with all the functions and programs that can be saved as

plug-ins.

This sub-menu has two sections divided by a horizontal line. The first section lists the functions, the

second section the programs. Choose the function or program you want to save as a plug-in, and pro Fit

will ask you where you want to save it. Note that you can only save functions and programs that you

compiled in pro Fit – you cannot save built-in functions or plug-ins.

The resulting file is a pro Fit document. You can load it by using the Load Plug-in command or by

double clicking it from the Finder.

Loading Plug-ins

Choose “Load Plug-in...” from the Customize menu to load a plug-in. You are asked to locate the plug-

in.

The command “Load Plug-in...” can also be used to load compiled Apple Scripts. See Chapter 11,

“Apple Script” for details.

Removing functions and programs from the menus

To remove a function or a program (or an Apple Script) from pro Fit’s menus, choose “Remove from

Menu” from the Customize menu. A submenu lists all the functions and programs that can be removed

from the menus. Select the name of the function or of the program you want to remove.

Note: you cannot remove any of pro Fit’s built-in functions (Spline, Polynom, etc.).

Loading plug-ins automatically on startup

Imagine you have one or more plug-ins or Apple Scripts that you use often. You can make them

available automatically whenever you start pro Fit.

Put the plug-ins you want to add permanently to pro Fit into a folder named “pro Fit plug-ins”. This

folder must be located in the same folder as pro Fit’s or in the Preferences folder of your System

Folder. (When you create the folder “pro Fit plug-ins”, type the name exactly as given here, otherwise

pro Fit will not find it.)

Whenever pro Fit starts up, it checks if a folder named “pro Fit plug-ins” is located in the same folder

as the application itself and tries to load all plug-ins it finds there. Then pro Fit looks for a folder “pro

Fit plug-ins” in the Preferences folder of the Library folder and again tries to load all plug-ins it finds

there.

If you are running pro Fit directly from a server, the modules found in the “pro Fit Plug-ins” folder in

the application folder on the server will be available to all users, the plug-ins in the “pro Fit plug-ins”

folder of your system’s Preferences folder will only be available to you.

 Defining functions and programs 187

You can also add plug-ins to the pro Fit application directly. To do so, select the pro Fit application in

the Finder and choose Get Info from the File menu. In the window that appears, go to the “Plug-ins”

section and click the button “Add” to select a plug-in to add.

Note: You can also place drawing, data or function files into the “pro Fit plug-ins” folders. The names

of these files will automatically appear in the Prog menu. Choosing the name from that menu will open

the file.

Loading a set of plug-ins together with a new preferences file

In multi-user environments different users might want to use the multi-preferences-file mechanism

provided by pro Fit.

The pro Fit preferences file holds the default settings and other information for many pro Fit’s options.

Different users may want to use different preferences files. pro Fit normally uses the preferences file

found in the Preferences folder inside your Library folder. It is possible, however, to start pro Fit by

double clicking another preferences file, or to switch to a new preferences file while pro Fit is in use by

choosing Preferences... from the File menu. This allows each user to use his own set of preferences.

See Chapter 13, “Preferences” to learn how to use preferences files.

pro Fit provides a mechanism that allows users to load their favorite plug-ins together with their

preferences file: whenever a preferences file is opened, pro Fit looks for a folder named “pro Fit plug-

ins” in the same folder as the preferences file and loads all the plug-ins it contains.

To take advantage of this mechanism, simply put your preferences file and pro Fit plug-ins folder

inside a common folder. Whenever pro Fit opens the preferences file, it also loads all the plug-ins

found in the “pro Fit plug-ins” folder.

Attaching programs

 Programs can be attached to drawing windows. Such programs are called whenever there is a user-

interaction with drawing windows, e.g. when they are clicked, opened, closed, etc. This feature is

useful when using the drawing window to design an interface for a program. The attached program can

then read the actions of a user, and interpret them.

To attach a program to a drawing window or to modify an attached program, bring the drawing

window to front, choose GetInfo from the File menu and check “Show program window”. Then click

OK. Alternatively click into the drawing window while holding down the control key and choose

“Show program window” from the contextual menu. A window with the source of the attached

program appears.

Once you have defined the program, choose “Compile” from the Customize menu. The program is

compiled and its code is attached to the window.

A program attached to a window (an “attached program”) communicates with pro Fit using tags (see

below). An attached program should always check its tag msgWhy to find out why it was called. If

this tag contains an unknown stringValue, the program should do nothing. Otherwise, it should take

some action according to its needs.

The following code-snippet retrieves the “msgWhy” tag:

188 Defining functions and programs

 var msgWhy:String;
 ...

 GetTag(program '', tag 'msgWhy', stringValue msgWhy);

The tag msgWhy can currently have the following stringValues:

 'clicked': The drawing window was clicked. In this case the tag

“msgShape” will have a stringValue set to the name of the

clicked shape (if a shape was clicked) or will have an empty

stringValue if no shape was clicked. The tags 'msgClickedX'

and 'msgClickedY' contain the clicked coordinates.

 'control clicked': A control shape was clicked successfully. In this case, the tag

'msgShape' has a stringValue set to the name of the clicked

shape, The tags 'msgClickedX' and 'msgClickedY'

contain the clicked coordinates.

 'control keydown start': A control receives keyboard input. This tag message is sent

before the key is processed. In this case, the tag 'msgShape'

has a stringValue set to the name of the shape, The tag

'msgCharCode' has a stringValue of length 1 giving the char

code of the pressed key. (For easier comparison there are the

following charCodes constants predefined: charHome,
charEnter, charEnd, charBackspace, charTab,
charLf, charPageUp, charPageDown, charCr,
charEsc, charArrowLeft, charArrowRight,
charArrowUp, charArrowDown, charDelete. The tag

'msgKeyCode' has a stringValue of length 1 giving the key

code of the pressed key. The tag 'msgModifiers' has a value

set to the keyboard modifiers (it tells, e.g. if the option-key was

pressed). You can change the msgCharCode, msgKeyCode

and msgModifiers tag to change the keyboard event before it

is processed. (For easier comparison there are the following

modifier codes predefined: modButtonState,
modCommand, modShift, modAlphaLock,
modOption, modControl.) You can set msgCharCode to

an empty string to suppress the event.

 'control keydown end': A control has received keyboard input. Called after the key is

processed. Same parameter as for message “control
keydown start”.

 'opened': The drawing window was opened.

 'save': The drawing window will be saved.

 'close': The drawing window will be closed.

 'command': A command added by the procedure AddCommand has been

called. The tag “msgCommand” contains the name of the

command.

 Defining functions and programs 189

 'idle': The program is being called because the value in its property

'idleCallTime' corresponds to the present value of

TickCount.

In addition to the tag “msgWhy”, attached programs can always rely on the presence of the

'msgOwnerWindow': The value of this tag is the ID of the window to which the program is

attached.

An attached program should therefore look like this:
program attached;
 var msgWhy: String;
begin
 GetTag(program '', tag 'msgWhy', stringValue msgWhy);
 if msgWhy = ... then check here for known tags
 ...

end;

It is also possible to attach a program from another program using the call AttachProgram.

Working with control shapes

As explained in Chapter 7, drawing windows can contain “control shapes”, such as buttons or

checkboxes. The following is a list of all control shapes and of the most important properties they have.

These properties can be read by calling GetShapeProperty and modified through

SetShapeProperties.

Buttons: These are simple objects that hilite when clicked.

Properties:

active: Set to true if the button can be clicked. Set to false if it
is grayed and cannot be clicked.

value: Usually 0. Set to 1 for hiliting the button.

text: The text that appears in the button.

Checkboxes: They automatically change their state when they are

clicked. Properties:

active: Set to true if the checkbox can be clicked. Set to false
if it is grayed and cannot be clicked.

value: 0 if not checked, 1 if checked.

text: The text that appears beside the checkbox.

Radio buttons: They are checked when they are clicked. They

usually come in groups. The program that manages the radio

buttons is responsible for unchecking all other radio buttons when

one radio button is clicked. Properties:

active: Set to true if the checkbox can be clicked. Set to false
if it is grayed and cannot be clicked.

value: 0 if not checked, 1 if checked.

text: The text that appears beside the radio button.

190 Defining functions and programs

Text fields: These are shapes that contain editable text. Generally,

text fields can be edited.

active: Set to true if the field can be edited. Set to false if it
cannot be edited.

value: The numeric equivalent of the text appearing in the field.
Use the function Invalid to check if the text corresponds to

a value number.

text: The text that appears in the edit field.

Static text fields: These are shapes that contain non-editable text.

Properties: same as for text fields, except that active has no

influence on the shape’s editability.

Popup menus: Popup menu shape have several “values” which

can be selected by choosing them from a pop-up menu. Properties:

active: Set to true if the pop-up can be clicked. Set to false if it

cannot be clicked and is grayed.

value: The currently selected item in the pop-up menu. 1 is the
first item, 2 the second item, etc.

text: The text that appears to the left of the pop-up.

menuItems: The menu items, separated by semicolons.

Wells: These shapes are usually used as background for other

objects, e.g. a graph. They consist of a white rectangle.

For further properties that you can use for controlling these shapes, see the description of

GetShapeProperty and SetShapeProperties in pro Fit’s on-line help.

To use control shapes, you first must draw them in a drawing window. Then you write a program that

manages them and attach it to the window. Finally, you must switch the window to “dialog mode”. The

following is a simple example that shows this procedure.

1. Open a new drawing window and create a button named “Multiply”

To do this, choose the button tool from the windows toolbox. Then

click into the drawing window. A dialog box appears where you can

define the text that appears on the button. You can also define a name

for the button, that we will later use for accessing the button from a

program. In this example, set the button text to “Multiply by 2” and

its name to “Button”.

 Defining functions and programs 191

Click OK, and the button will appear in the drawing window.

2. Create an edit field named “Number”

Now, click the button tool again and hold the mouse down until a poup menu appears. Choose

“Text Field”. Now, click into the drawing window and enter “Number” for the shape’s name. Then

click OK.

You now should have a drawing window with an edit field and a button. Arrange these items as you

wish, then save the file.

The window might e.g. look like this:

3. Switch the window to dialog mode

To do this, hold down the control key while clicking

anywhere into the window and choose “Display As

Dialog”. Alternatively, choose “Get Info...” from the

192 Defining functions and programs

File menu and check the option “Display As Dialog”.

The window now looks like a dialog box.

4. Attach the program

To attach the program, again hold down the control key while clicking anywhere into the window

and choose “Show Program Window”. Then, enter the following program:

program attached;

 var msgWhy: String;

 msgShape: String;

 x: real;

begin

 GetTag(program '', tag 'msgWhy', stringValue msgWhy);

 if msgWhy = 'control clicked' then

 begin

 GetTag(program '', tag 'msgShape', stringValue msgShape);

 if msgShape = 'Button' then

 begin

 x := GetShapeProperty('Number', value);

 if not Invalid(x) then {if valid number}

 SetShapeProperties(shape 'Number', value x*2);

 end;

 end;

end;

Hit Command-L to add the program to the window.

Now, your “dialog box” is ready to use. Enter a number in the edit field, then hit “Multiply by 2”.

 Defining functions and programs 193

Notes:

- If you want to modify the items in the dialog window, switch it back into drawing mode. To do
this, hold down the control key and choose “Display As Drawing”. For changing the text of a shape
or its name, double-click it. Alternatively, select it and choose “Shape Settings...” from the Draw
menu.

- As a shortcut, you can change some properties of the items when the window is still in dialog
mode. To do so, hold down the command key and double-click the item you want to modify.

194 Working with external modules

 Working with external modules 195

10 Working with plug-ins
This chapter explains how to add plug-ins to pro Fit. Plug-ins are files containing the computer code for

a pro Fit function (to appear in the Func menu) or a pro Fit program (to appear in the Prog menu).

pro Fit comes with a number of ready-to-run plug-ins containing useful functions or programs. The

next section tells you how you add them to pro Fit.

See the sections “Creating a plug-in” and “Writing a plug-in” for a detailed explanation of how to

create your own plug-in.

Loading a plug-in

To add a plug-in to pro Fit:

1. Select Load Plug-in from the Customize menu.

You are asked to locate your plug-in:

2. Choose the plug-in you want to load and click “Open”.

pro Fit checks if a plug-in can be found in the file you have selected. If yes, it is loaded. If the plug-

in is a function, it is added to the Func menu. If it is a program, it is added to the Prog menu.

Instead of loading a plug-in by choosing Load Plug-in, you can double-click its file. (For this, the ‘file

type’ and ‘creator’ of the file must be ‘ftCD’ and ‘NLft’, or it should have one of the following

extensions: code, .fitcode .plugin, .fitplugin .proFitCode, or .proFitPlugin).

If you have loaded a plug-in and you subsequently change it (e.g. by recompiling it) you

must remove the loaded plug-in from pro Fit before loading its new version.

To load your plug-ins automatically at start-up, put them into a folder called “pro Fit plug-ins” located

in the same folder as the application itself or in the Preferences folder of the Library folder. See the end

of Chapter 9, “Defining functions and programs”, for a more detailed discussion of how to work with

pro Fit plug-ins.

The rest of this chapter explains how you can write plug-ins using your own compiler.

Creating a plug-in with a compiler

You need the following to write a plug-in:

• Some experience in programming.

• A compiler (such as Metrowerks® C/C++ or Aplle’s XCode).

196 Working with external modules

To create plug-in, proceed as follows:

1. Locate the development files

You will find all files that you need to program a plug-in in the folder Example Files/ Programming

7 - plug-ins/ of the pro Fit distribution package.

The folder Interfaces contains files that allow your plug-in to communicate with pro Fit.

The folder Sources contains example projects. Multiply and Inverse Erf are a simple program and a

simple function plug-in for Metrowerks Codewarrior. Bundle plugin is an example for a simple

program plug-in that can be compiled under XCode as well as Codewarrior.

2. Copy one of the example projects

 Working with external modules 197

If you are programming with XCode, make a copy of the “bundle plugin” folder. If you are using

Codewarrior, you can copy any of the three example projects, whichever comes closest to what you

do. Note that the copy should reside in the same folder as the example projects.

3. Build your code

Modify the code in the duplicated folder according to your needs.

3. Build the plug-in

The plug-in should be created in a file having the type “ftCD” and the creator “NLft”. If you are

building the file under MacOS X on a non-HFS volume (which is not recommended), add the

extension ".fitcode" or ".proFitCode" to the end of the file's name, e.g. "myPlugin.fitcode". The

example projects are set to generate the correct file types.

4. Link the plug-in to pro Fit

To do this, either double-click the file you have built or load it from pro Fit by choosing Load Plug-

in... from the Customize menu.

The following gives some hints for creating plug-ins with some of the most common compilers. Note

that there are sample “project” and “make” included with the pro Fit package.

Writing an a plug-in with an external compiler

Routines to be modified

The following table lists the routines defined in ProgramTemplate.c/p and FunctionTemplate.c/p that

can or should be modified by the user. Functions or procedures that are only used by advanced

programmers are marked with a †:

function name modify if defining a

SetUp program or function

CleanUp † program or function

InitializeProg † program

Run program

InitializeFunc † function

Func function

Derivatives function

First † function

Check † function

Last † function

In the following section, we first describe the routines SetUp and CleanUp that are used for both

types of plug-ins. Then we discuss the routines only used in external programs, then the routines only

used in external functions.

All the following routines have a parameter called pb. It is a pointer to a struct of type

ExtModulesParamBlock. Most users won’t need the information stored in it. Advanced

198 Working with external modules

programmers can refer to the section “Global variables” for more information about data to be accessed

through pb.

Routines to be defined in functions and programs

void SetUp (short* const moduleKind, Str255 name,

 long* const requiredGlobals, ExtModulesParamBlock* pb);

This routine is called when your plug-in is linked to pro Fit. It must return the following values:

• moduleKind must be set to the constant isProgram if your plug-in is an external program, and

to isFunction if your plug-in is an external function.

• name must be set to the name of your plug-in. If you are programming in C, you must make sure

that you return a Pascal string. For this purpose, you can use the function SetPascalStr that is

defined in proFit_interface.c:

 SetPascalStr(name,"\pmyName",255);

(The last parameter is the maximum length of the resulting string.)

• requiredGlobals should usually be set to 0. Advanced programmers can set it to the size (in

bytes) of a global data buffer they want to have allocated. If requiredGlobals is returned with

a value > 0, pro Fit allocates a block with the corresponding number of bytes and stores a pointer to

it in pb->globals. pb is a pointer to a record called ExtModulesParamBlock and is passed

to all routines called by pro Fit.

Note that memory allocated in this way is deallocated automatically when your plug-in is unlinked

from pro Fit – you must not deallocate this memory yourself.

Generally, you should use static variables for global memory instead of using pb->globals.

void CleanUp (ExtModulesParamBlock* pb)

CleanUp is called when pro Fit is quitting or when your plug-in is removed from pro Fit. In most cases,

you won’t have to do anything here. Advanced programmers may wish to deallocate some special

memory, to close a port or to clean up other stuff here.

Routines to be modified in external programs only

void InitializeProg (ExtModulesParamBlock* pb)

This routine is called before a program is run for the first time. Most users can leave it empty.

Advanced programmers may wish to allocate some memory, open a port, initialize global (static)

variables, etc. here.

void Run(ExtModulesParamBlock* pb)

This routine is called when your program is executed. It should hold your program’s main code.

 Working with external modules 199

Routines to be modified in external functions only

An important note about parameter indices: When accessing arrays that hold values,

names, etc. of the parameters, such as a[], a0.names, mode[], dyda[], the

index i ranges from 0 to 127 in C

void InitializeFunc (Boolean* const hasDerivatives,

 Str255 descr1stLine, Str255 descr2ndLine,

 short* const numberOfParams,

 DefaultParamInfo* const a0, ExtModulesParamBlock* pb)

This routine is called once after your external function has been linked to pro Fit. It must return some

default values and information about the function. Advanced programmers may also use it for

initialization of global (static) variables, memory allocation, etc.

InitializeFunc should return the following data in its parameters:

• hasDerivates must be set to true if you want to calculate some derivatives of your function

with respect to its parameters yourself (in the function Derivatives described below). Any

derivative you don’t calculate will have to be calculated numerically by pro Fit. If you set

hasDerivates to false, all derivatives will be calculated numerically and the function

Derivatives will be ignored. (The derivatives are used for nonlinear fitting.)

• descr1stLine, descr2ndLine: These two strings are displayed in the parameters window

and should give a short description of your function. (C programmers should use the function

SetPascalStr described under SetUp, above, for setting these strings.)

• numberOfParams: Here you should return the number of parameters of your function (up to

128).

• a0: This is a pointer to a structure that defines the default values, modes, names and limits of your

parameters. You can leave this record unchanged if you want to use the default values.

The following table lists the values that can be set in a0 for each parameter i:

200 Working with external modules

Pascal notation 1) C notation 2) contains

a0.value^[i] (*a0->value)[i] Default value

a0.mode^[i] (*a0->mode)[i] Default mode, set to active (varied during
fitting), inactive (not varied during fitting), or
constant (cannot be fitted)

a0.name^[i] (*a0->name)[i] Parameter name, a Pascal string of length
maxParamLength. 3)

a0.lowest^[i] (*a0->lowest)[i] The lower limit for a parameter. By default, this
value is -INF.

a0.highest^[i] (*a0->highest)[i] The upper limit for a parameter. By default,
this value is INF.

1) In Pascal, indices for these arrays run from 1 to 128
2) In C, indices for these arrays run from 0 to 127
3) C programmers should set the name by calling the function SetPascalStr with a maximum string

length of maxParamLength. Example:
 SetPascalStr((*a0->name)[0],"\pname", maxParamNameLength);

void Func (double x, ParamArray a,double* const y,

 ExtModulesParamBlock* pb)

This procedure is called to calculate the return value of your function. It has the following parameters:

• x: The function’s independent variable.

• a: The function’s parameters a[i]. Note that the index i ranges from 1 in Pascal but from 0 in C.

• y: The function’s return value to be calculated from x and a.

void Derivatives(double x, ParamArray a, ParamArray dyda,

 ExtModulesParamBlock* pb)

This routine calculates the partial derivatives of your function with respect to its parameters. You can

leave this routine empty if you don’t need it, or you can calculate only some derivatives. You don’t

need to calculate all of them. pro Fit will check if you did not calculate a derivative and will calculate it

numerically. Set hasDerivatives to false in InitializeFunc if you are sure that you will

never want to calculate any derivatives yourself. (Note that a call of Derivatives with a given x-

value is always preceded by a call of Func with the same x-value – therefore, you might save a

temporary result in Func for later use in Derivatives. See also Chapter 9, “Defining functions and

Programs”.)

Parameters:

• x: The function’s independent variable.

• a: The function’s parameters a[i]. Note that the index i ranges from 1 in Pascal but from 0 in C.

• dyda[i]: The partial derivatives to be returned.

void First (ParamArray a, ExtModulesParamBlock* pb)

This routine is called whenever the parameters a have changed before Func is called. In most cases,

you can leave it empty. Advanced programmers can use First for speeding up your function by

 Working with external modules 201

evaluating temporary results that only depend on your function’s parameters but not on its x-value (for

more information: see the description of First in Chapter 9, “Defining functions and Programs”).

Parameters:

• a: The function’s parameters a[i]. Note that the index i ranges from 1 in Pascal but from 0 in C.

short Check(short paramNo, DefaultParamInfo* const a0,

 ExtModulesParamBlock* pb)

Check is called whenever the user has entered a value in the Parameters window. In most cases, you

can leave Check empty, returning the value good. Advanced programmers can use it for improving

the parameters window’s user interface. Applications of Check are described in Chapter 9, “Defining

functions and Programs”).

Parameters:

• paramNo: This is the index of the parameter that the user has changed (1..64 in Pascal, 0..63 in C).

• a0: This is a record (in C: a pointer to a struct) that defines the default values, modes, names and

limits of your parameters as they appear in the parameters window. The values that you can access

or change in this data structure are listed under the routine InitializeFunc above.

Check should return one of the following values:

- good if the new parameter is to be accepted

- update if the new parameter is to be accepted but the parameters window must be redrawn

(because Check changed some values in a0)

- bad if the new parameter cannot be accepted.

void Last (ExtModulesParamBlock* pb)

This routine is called whenever an operation that has used your function (such as a command for

fitting) is done. In most cases, you can leave this procedure empty. Applications of Last are given in

Chapter 9, “Defining functions and Programs”.

Predefined constants and typesWhen writing a plug-in, you can (and must) use several predefined
constants, types and procedures (or functions). They are defined in profit_interface.h and
proFit_paramBlk.h. This section describes some of the most important things defined in these files.

The definitions in these files should not be changed. Doing so might cause

incompatibilities with the present or future versions of pro Fit.

General remarks:

• Strings passed between pro Fit and a plug-in are always Pascal strings (and not C strings). If you

are programming in Pascal, you won’t have any problems with this. If you are programming in C,

you must remember that a Pascal string must be introduced by "\p" (example: "\pMyString").

For assignments, you can use the function SetPascalString described earlier in this chapter.

• Records (structs) passed between pro Fit and a plug-in always use “68k-alignment”. Therefore, for

compatibility with Power Macintosh compilers, definitions for C structs are always preceded by

202 Working with external modules

#if defined(powerc) || defined (__powerc)

#pragma options align=mac68k

#endif

 and followed by

#if defined(powerc) || defined (__powerc)

#pragma options align=reset

#endif

• Parameter indices under Pascal always run from 1 to maxNrParams, in C they run from 0 to

maxNrParams–1.

The following lists the most important constants and types.

Global variables

Global variables (or static variables, as they are often called by C programmers) are variables that

remain statically in memory. Their values are preserved between individual calls to your plug-in.

In XCode and CodeWarrior you can define global variables in the way you are used to: In Pascal, you

declare them globally within your unit – in C, you declare them outside your functions or, if you

declare them inside a function, you declare them as static.

Procedures provided by pro Fit

pro Fit offers a list of functions and procedures that can be called by your plug-ins. If you are

programming in Pascal, they are defined in the interface of the file proFit_interface.p. If you are

programming in C, they are defined in the header file pro Fit_interface.h. Their implementation can be

found in the files pro Fit_interface.p or proFit_interface.c, respectively.

Most of the functions and procedures provided by pro Fit for plug-ins are the 1:1 equivalents of the

ones that can be used when defining a function or program with pro Fit’s definition language. Refer to

pro Fit’s on-line help for more information on the individual routines.

 Apple Script 203

204 Apple Script

11 Apple Script

Introduction

Apple Script is a language for scripting applications on the Macintosh. It provides a common technique

for automating tasks, exchanging data, and process remote control.

You can use Apple Script with pro Fit. Note, however, that pro Fit cannot create (i.e. compile) an

Apple Script. To use Apple Script with pro Fit, you need an Apple Script compiler, such as Apple’s

Script Editor (you can find it in the folder Apple Script of your Application’s folder). You enter the

script in the script editor and compile it there.

Once the script is compiled, you can either run it from your script editor, or you

can save it in its compiled form. (When using Apple’s Script Editor, choose

“Save As...” from the “File” menu, choose the type “Compiled script” and save

the script.) Such a compiled script can be loaded into pro Fit: Choose “Load

Plug-in...” from the Customize menu and select the compiled script. It is added to

the Prog menu.

In the following, we give some examples for scripting pro Fit through Apple Script. Then we discuss

the differences between programs and scripts.

For a list of all Apple Script classes and methods supported by pro Fit, read pro Fit’s dictionary from

your Apple Script compiler, e.g. by choosing “Open Dictionary...” from the File menu of Apple’s

Script Editor.

There is an Apple Script equivalents for most commands of pro Fit’s built-in compiler. Appendix C of

this manual provides a cross reference between the commands of pro Fit’s compiler and the

corresponding operations in Apple Script.

Apple Script is a very powerful programming language. However, it may be confusing

for the beginner. The easiest way to get started is using Apple Script's “recording”

capabilities. Just open the Script Editor and click the Record button. Now go into pro Fit

and do (by hand) what your script is supposed to do. Script Editor records all your

actions as Apple Script commands. Once you are through, go back to Script Editor and

click the Stop button. Your script is now complete.

Note that this chapter is not intended to give a beginner’s introduction to the Apple Script language.

We will, however, explain some its aspects as we use them. To learn more about Apple Script, consult

the dedicated literature, such as the “Apple Script Language Guide” distributed by Apple.

Examples

Opening and closing a single file

The following is a very simple Apple Script for opening and closing a single file:

 tell application "pro Fit"

 Apple Script 205

 open file "measured data" -- open a file
 run program "Analyze" -- analyze it
 close window "measured data" -- close it
 end tell

The script starts with the statement tell application "pro Fit" which indicates that all subsequent

statements (until end tell) are to be sent to pro Fit. The following lines tell pro Fit to open a file called

“measured data”, run the program “Analyze” from the Prog menu, and then close the file again.

To use this script, you must enter it in a script editor, such as Apple’s Script Editor:

When you click Run, the script is compiled and then executed. When compiling the script, the

statements are converted into Apple Events, data packets that can be exchanged between applications.

When running the script, they are sent to pro Fit.

As mentioned above, you can save the script as a “Compiled Script” and then load the compiled script

from pro Fit by choosing “Load Plug-in...” from the “Customize” menu. The script is added to the Prog

menu from where it can be run.

Batch processing

Imagine you have a large number of data files in a folder. You want to open each of these files from

pro Fit and analyze its data. Without scripting, you would have to open each file by hand, run your

analysis, then close it again – boring work if you have to do it often. The following script does it all for

you:

-- bring up a dialog for selecting the folder of the files to analyze
set myFolder tto choose folder with prompt "Choose a folder with data files:"

-- create a list with all files in the folder
set myFiles tto list folder myFolder -- a list of files in myFolder

206 Apple Script

set myFileCount tto count myFiles -- the number of files in myFolder

-- now start working with pro Fit
tell application "pro Fit"

 sset oldErrorAlerts tto error alerts -- save error alert status
 sset error alerts tto false -- pro Fit should not show alerts
 activate -- bring pro Fit to front
 rrepeat with i ffrom 1 tto myFileCount -- go through all files
 sset theFile tto item i of myFiles -- get the i-th file
 ttry
 -- open the file for processing as data file:
 open file ((myFolder as string) & theFile) as table
 write line "found: " & theFile -- write comment to Results window
 close window theFile saving no -- close without saving
 oon error errText
 write line "cannot open: " & theFile & " (" & errText & ")"

 eend try
 eend repeat
 sset error alerts tto oldErrorAlerts -- restore
end tell

This script first brings up a dialog box for selecting a folder by using the Apple Script extension

choose folder with prompt. Then it goes through all the files in this folder and uses the command open

file name as table for opening the file as a data window. It also uses the command write line text for

writing a text into the results window. Then it closes the file.

The open file and close window commands are enclosed by the statements try and on error. If any of

these commands fails and returns an error, the write line statement between on error and end try is

executed.

Note that we are setting a property called error alert to false before opening the files. This tells pro Fit

that it should not show any error alerts of its own when it cannot open a file.

The above example simply opens each file in the folder and closes it again. In practice, you may e.g.

want to run a program on each opened file. For this purpose, simply insert
 run program "MyProg" -- analyze it

after the command open file, where “MyProg” is the name of the program you want to run.

The following is a more complete version of the above script. It not only runs a program on each

opened file, it also defines the program, adds it to pro Fit’s Prog menu, and then exchanges data with it:

-- the following defines the pro Fit program run for each data file:
set scriptProgram tto ¬
 "
program ScriptProgram;
 var sum, i;
begin
 sum := 0;
 for i := 1 to nrRows do
 if DataOK(i,1) then sum := sum+data[i,1];
 globalData[1] := sum; { store result }

end;
"

 Apple Script 207

-- bring up a dialog for selecting the folder of the files to analyze
set myFolder to choose folder with prompt "Choose a folder with data files:"

-- create a list with all files in the folder
set myFiles tto list folder myFolder -- a list of files in myFolder
set myFileCount tto count myFiles -- the number of files in myFolder

-- now start working with pro Fit
tell application "pro Fit (ppc)"
 sset oldErrorAlerts tto error alerts -- save error alert status
 sset error alerts tto false -- pro Fit should not show alerts
 activate -- bring pro Fit to front
 compile scriptProgram -- add the above program to Prog menu
 sset myTable tto make new table -- open new data window
 sset k tto 1 -- a counter for opened files
 rrepeat with i ffrom 1 tto myFileCount

 sset theFile tto item i oof myFiles -- get the i-th file
 ttry
 open file ((myFolder as string) & theFile) as table -- open the file
 write line "processing: " & theFile
 run program "ScriptProgram" -- run the program in pro Fit
 close window theFile saving no -- close without saving
 sset sum tto globalData 1 -- get result
 sset cell k oof column 1 oof myTable tto sum -- store it in the table
 sset k tto k + 1
 oon error errText
 write line "cannot process: " & theFile & " (" & errText & ")"
 eend try

 eend repeat
 delete program "ScriptProgram" -- remove the program from Prog menu
 sset error alerts tto oldErrorAlerts -- restore
end tell

The above script starts with the definition of the program to be run by pro Fit. Then it opens a new data

window and stores its reference in “myTable”. Now it opens each data file in the designated folder,

calculates the sum of the values in its column 1 and stores these sums in column 1 of the data window

myTable.

The script starts with
 sset scriptProgram tto ¬

This statement sets the symbol scriptProgram to the text following it. The symbol ¬ at the end of the

line tells the script editor that more lines follow (to generate this symbol, type the return key while

holding the shift key down).

The statement
 compile scriptProgram -- add the above program to Prog menu

sends this text to pro Fit and tells pro Fit to compile it, i.e. to add it to the Prog menu.

Then, the script creates a new data window using the command
 sset myTable tto make new table -- open new data window

The symbol myTable becomes a reference to the new data window.

208 Apple Script

Now, the files of the designated folder are opened one by one. After a file is opened, the

ScriptProgram is run and the file is closed again. Then the script retrieves the result of the program

from globalData[1]. The values in the array globalData can be accessed from scripts by using the

object globalData and an index, such as

 sset sum tto globalData 1 -- get result

The result retrieved in this way is transferred to the k-th row of column 1 of the data window myTable:

 sset cell k oof column 1 oof myTable tto sum -- store it in the table

As you can see, scripts can exchange data with pro Fit, either through globalData or by accessing

values in a data window.

There are other ways of interaction between scripts and pro Fit. They are explained in the last section

of this chapter, which lists all Apple Script commands and objects supported by pro Fit.

When to program, when to script

As you may have realized, there are various things you can do through Apple Scripts as well as from a

program defined within pro Fit. For example, you could define the following program for writing the

sum of the two first cells of a data window into the results window:

program Sum;

begin

 Writeln(data[1,1]+data[1,2]);

end;

Alternatively, you could do the same from an Apple Script:
tell application "pro Fit"
 set sum to value of cell 1 of column 1 + value of cell 1 of column 2
 write line sum
end tell

Even though the above examples do the same, you will prefer the program, because defining programs

is usually more convenient and faster.

In practice, you probably use programs more often than Apple Scripts. Programs can be defined within

pro Fit, they are much faster, and they are better suited for numerical applications. However, there are

some things that you simply cannot do from a program, such as exchanging data with other applica-

tions, communicating with the Finder, batch processing a large number of files, etc. For these tasks,

you can use Apple Scripts.

You can combine the advantages of Apple Scripts and programs: To call an Apple Script from a

program, first add it to the Prog menu (choose Load Plug-in... from the Customize menu), then call it

with CallProgram(…). To call a program from an Apple Script, compile it and use the command run

program.

Apple Script methods and classes

The following describes some applications of the most important Apple Script methods and classes

supported by pro Fit. For a complete overview, check pro Fit’s dictionary and have a look at Appendix

C of this handbook.

 Apple Script 209

Some methods

open: Open the specified object(s)

 open file -- list of objects to open

 [as data window/drawing window/funcProg window/text window]

If the file is a file of type text, you can indicate if it is to be opened as text (i. e. in a new function

window) or as table (i. e. in a new data window).

Examples:
open file "HD:myData" -- opens the file "myData" on the disk HD
open file "data" as data window -- opens the (text) file “data” as data window
open file "Drawing1" -- opens the file called “Drawing” in pro Fit folder

calculate statistics: performs statistical calculations on the given window

 calculate statistics reference -- the data window for the statistical analysis

 [column integer] -- the column for the statistical analysis. 0 to use all columns.

 median boolean -- set to true to calculate median, minimum, maximum.

 basic boolean -- set to true to calculate basic statistical information.

 skewness boolean -- set to true to calculate Skewness and Kurtosis.

 [selected cells boolean] -- true if statistical analysis of the current selection

 [selected rows boolean] -- true if statistical analysis must be applied

 -- only to the data contained in the selected rows.

 To retrieve the results, use e.g.

 get statMean of results -- returns the mean value

 (Available selectors of results are listed for class "calculation results" below)

capture: Switches capturing on and off

 capture constant -- to file | enabled | disabled | done

 [to alias] -- the file to capture into (not used for options on | off | done)

 Example:
tell application "pro Fit PPC"

 capture to file "HD:logFile" -- start capturing to logFile
 write line "hi there" -- will be captured
 capture disabled -- disable capturing temporarily
 write line "some text" -- will not be captured
 capture enabled -- enable capturing
 write line "add this to log file" -- will be captured
 capture done -- close the capture file
end tell

close: Close a window

 close reference -- the window to close

 [saving yes/no/ask] -- Specifies whether or not changes should be saved

Windows can be specified by name or index (1 is the frontmost window, 2 is the window behind

the frontmost window).

210 Apple Script

If you append the specification saving yes then all changes are saved – if the window has not yet

been saved to a file, you are asked to specify where you want to save the changes. If you append

saving no, changes are not saved. If you append saving ask or if you do not append a saving

specification and the window contains unsaved changes, pro Fit will ask if you want to save the

changes.

Examples:
close front window -- prompts for saving unsaved changes
close window "Table1" saving no -- closes the window without saving

compile: Compile a function or program written in pro Fit's definition language.

 compile reference -- text or file to compile

Examples:
compile file "HD:myProg" -- compiles the given file
compile "function lin; begin y:=a[1]*x; end;" -- compiles a text

the following is a more realistic way to define and compile a larger program from a script: (note

that you can create the character "¬" by hitting option-return – this character specifies that the line

is continued on the next one):
set myProg to ¬
"
program test;
 var i, sum;
 begin
 sum := 0;
 for i := 1 to nrRows do
 if dataOK(i, 1) then sum := sum + data[i,1];

 writeln('sum of col 1: ', sum);
 end; "

tell application "pro Fit"
 compile myProg -- compiles the above definition
 run program "test" -- and runs it
end tell

delete: Removes a function or program from pro Fit's menus

 delete reference -- The function or program to delete
delete program "FitFrontWindow" -- deletes the specified program
delete function "linear" -- deletes the specified function

do script: Compile and execute one or more Pascal statements

 do script reference -- the window or the statements to execute

Examples:
do script "Writeln('Hello world');" -- executes the pascal statement

make: Make a new window or shape.

 make

 new: type class -- the class of the new element: 'table', 'drawingWindow',

 Apple Script 211

 -- 'textWindow'

 [with properties: record] -- the initial values for the properties of the element

 Result: reference -- to the new object(s)

The keyword “new” is optional in Apple Script.

what specifies the type of window to be opened. Specify table for a data window,

drawingWindow for a drawing window, textWindow for a function window.

The with properties parameter specifies the properties of the window in an Apple Script record.

All types of pro Fit windows have the property name holding the name of the window as a

string. In addition to this, data windows have the properties nrRows and nrCols with the

numbers of rows and columns.

Examples:
make table with properties {name:"myTable"}
 -- creates a new data window having the name "myTable"
make drawingWindow with properties {name: "lookatthis"}
 -- creates a new drawing window having the name lookatthis

make textWindow -- creates a new function window
make table with properties {name:"small", nrCols:10, nrRows:20}
 -- creates a data window with name "small", 10 columns and
 -- 20 rows

-- the following creates a new data window and then closes it using a
-- temporary reference to the window
set myRef to make new table
close myRef

save: Save a window

 save reference -- the window to save

 [in alias] -- the file in which to save the object

 [as data file/drawing file/EPS file/function file/PICT file/text file]

 -- file type for data export

Windows can be specified by name or index (1 is the frontmost window, 2 is the window behind

it, etc). Note that Apple Script allows you to specify indexed objects in various ways (such as

window 1, front window, 3rd window, last window)

Optionally, you can specify the file where the window is to by saved after in. If you do not

specify the file where to save the window and the window has never been saved before, you are

prompted to enter a file name. If you don’t specify the file where to save the window and the

window has been saved before, the window is saved to the same file as before.

If the specified window is a data window, it is saved as a regular pro Fit file by default (this is

equivalent to specifying “as table”). If you want the data window to be saved as text file for

exporting it, specify “as text”.

Examples:
save window 1 to file "HD:data" -- saves front window to file
save window "data" to file "data.txt" as text -- saves as a text file

212 Printing

 Printing 213

12 Printing
There is a wide range of different printers that can be connected to a Mac OS machine, and each of

these printers have different capabilities, resolutions and command languages. pro Fit allows you to get

the best out of most of the commonly used printers if you follow the guidelines described in this

chapter.

Basically, there are two possibilities for printing pro Fit drawings. You can print from pro Fit directly

(using the Print command from the File menu) or you can export a drawing to another application,

such as a word processor (using the Copy or the Create Publisher commands or by dragging it to the

other application), and print it from there. The next two sections discuss these two possibilities

separately.

Printing from pro Fit

Before printing, you should choose Page Setup from the File menu.

You can print the active window by selecting the Print command from the File menu.

For drawing windows, pro Fit offers two different modes of printing: Quartz and Postscript. You can

select the desired method by choosing Preferences... from the pro Fit menu. In the dialog box that

comes up, click the icon “Printing” in the list at the top..

If Quartz is checked, pro Fit prints drawings using the Quartz engine introduced with MacOS X. This

provides best results on all printers as well as for pdf generation.

If PostScript is checked, pro Fit generates PostScript commands while printing a drawing window. On

a PostScript printer, this provides good results. However, printing text with PostScript may sometimes

lead to problems on some printer drivers.

Do not use Postscript when printing to a non-PostScript printer.

Note 1: Bitmap based patterns appear as gray levels under PostScript.

Note 2: If you experience postscript problems when drawing plots containing a large number of points,

try to increase the number of points drawn with one stroke in the Plotting panel of the Preferences

command.

In the printing section of the Preferences dialog, you can also choose the default page setup to be used

for the various window types within pro Fit.

Printing a pro Fit drawing from another application

When drag or copy pictures to other applications, pro Fit can encode these pictures in two different

ways: PICT and PDF. PICT is a legacy format dating from the times prior to MacOS X and has

limited capabilities, but it has the advantage that it is understood by nearly all applications. PDF is a

more modern format with much improved capabilities, but not all applications are able to handle it. For

example, Microsoft Word up to version 2003 does not support importing PDF images through the

clipboard.

214 Printing

In the “Copy” section of pro Fit’s Preferences command, you can specify if pro Fit is to export one or

both of these formats. :

PDF: Many MacOS X applications support the exchange of PDF data over the clipboard. This is the

preferred format to export pictures from pro Fit because PDF data is resolution independent and allows

excellent rendering on nearly all devices.

Quickdraw PICT: Some legacy or monopolist applications do not support PDF over the clipboard.

For these applications, pro Fit can place Quickdraw pictures on the clipboard. These are accepted by

nearly all applications. But they are not resolution independent. For best portability, pro Fit exports

bitmap based pictures. They should render fine on all devices as long as the resolution of the bitmap is

equal to or much higher than the one of the device. Therefore, when using Quickdraw pictures, you

must set the resolution correctly. The field Resolution gives the resolution of the bitmap in dots per

inch. The larger the resolution, the finer the bitmap will print and the more memory it will use. Set this

field to your printer resolution or to an integer divider of your printer resolution. The pop-up Color

depth sets the number of bits for encoding the color of each pixel.

Note: In most situations, you can check PDF as well as Quickdraw PICT. The target application will

usually select whatever information it handles best. Uncheck one of these options if you want to force

the target application to use a given format (if it can).

 Preferences 215

13 Preferences
pro Fit offers many possibilities to customize its features: You can choose the format for exporting

pictures, the preferred method for printing, you can save your preferred user interface options, etc. All

of these settings are saved in pro Fit’s preferences file. During start-up pro Fit looks in the Preferences

folder of the System folder for its preferences file. If the file is there, pro Fit reads its standard settings

from it. If the file is not there, pro Fit creates a new preferences file. You can switch to another

preferences file or create a new preferences file anytime later.

If you do not want to load the standard preferences file in the system folder, hold down the option and

the shift key while starting up pro Fit.

Most of pro Fit’s settings are controlled by choosing Preferences... from the pro Fit menu. Doing so

brings up a dialog box with several panels. Each panel controls a set of options. To choose a panel,

select its icon from the list at the top of the dialog box.

The panels Printing and Copy are discussed in Chapter 12, “Printing”.

We will not provide a detailed discussion of the other panels in this handbook since each of them

comes with its own help button to the left of the Cancel button:

Clicking the help button brings up a help screen that explains the functions of all the settings.

216 General features

14 General features

Getting help

pro Fit offers a powerful on-line help based on Apple’s Help Viewer application. The pro Fit Help can

be accessed by choosing proFit Help from the help menu, or by clicking one of the question marks

that you find in pro Fit windows and dialog boxes. Balloon help is also supported.

When defining functions and programs there is a special feature based on a dedicated help menu which

is always present in the header of function windows. See chapter 9, “Defining functions and

programs”, for more information on this help menu.

The on-line help system for pro Fit 5.6 is embedded into the pro Fit application bundle and therefore

usually not visible to the user.

Help tags

pro Fit supports help tags for providing information on individual user elements.

Help tags on MacOS X are displayed automatically when you keep the mouse over an item of interest

for at least half a second.

On-line evaluation of mathematical expressions

Wherever pro Fit expects a numerical input, such as in spreadsheets or dialog boxes, you can enter a

mathematical expression. For example, instead of typing a number directly, you can use a

mathematical expression like “exp(1)” or “6+sin(pi/4)”. pro Fit reads the mathematical expression you

typed or pasted and calculates the numerical result.

Text windows, such as the result window, can be used as a calculator by typing an expression on a new

line, positioning the insertion point on that line, and hitting the Enter key. The result is displayed on the

next line.

 General features 217

You can also use mathematical expressions in all pro Fit dialog boxes. As an example, if you want to

tabulate a function between 0 and two times pi at intervals of pi/5, type command-T and enter the

following:

When typing a mathematical expression, you use the same syntax elements that are available when

writing a function definition. In on-line mathematical expressions, x is equal to the last result that was

evaluated, and a[i] is equal to the input values shown in the current parameters window. You can use

all the predefined functions available when writing the definition of a function. As an example, after a

successful fit you can type 'ChiSquared' in a data window cell. This tells pro Fit to set the value of that

cell to the mean deviation obtained in the last fit (see Chapters 9 and 10, together with pro Fit’s on-line

help, for more information on predefined functions).

Let’s look at a simple example that illustrates how you can use pro Fit’s understanding of mathematical

expressions when you are pasting into a data window. Write the following text and copy it to the

clipboard:

a[2] fittedParams(2) a[2] – fittedParams(2) paramSD(2)

a[3] fittedParams(3) a[3] – fittedParams(3) paramSD(3)

a[4] fittedParams(4) a[4] – fittedParams(4) paramSD(4)

Where the ‘ ’ stands for a tabulator character and each line is terminated with a carriage return (¶). If

you paste the above text into a data window after a successful fit, you automatically obtain a table

containing the parameter values before the fit, the values after the fit, their difference, and the resulting

standard deviations.

File info

pro Fit lets you save a comment with every one of its files. You can edit this comment with the Get

Info command from the File menu. Choosing Get Info presents a dialog box with a large field for

editing text.

218 General features

You can add an info comment to data windows, drawing windows and functions or programs.

The data windows let you view and edit this information directly, without using the Get Info

command. For this you drag down the info hook (a black area on top of the right scroll bar) of a data

window to create an info field of the desired size. See Chapter 4, “Working with data” for more

information on data windows.

Note that the info comments are in general only saved in files that have pro Fit’s standard formats. If

you save a function definition as normal text files (TEXT format) or if you save a drawing window as a

 General features 219

picture or EPS file (PICT format, EPSF format), the info comments are not saved. If you save a data

file as TEXT, you have the option of placing the info comments right at the beginning of the text file,

as a header. To set this option, you have to choose “Custom format” in the dialog box that comes up

when saving text files.

Find and Replace

pro Fit provides Find & Replace features to help you navigate through text or data. This feature is

available for the results window and all function windows as well as for all data windows. You will

find it useful when you are editing the definition of a function or a program inside a function window.

The Find & Replace commands are found in the Edit menu:

When you choose Find... for a text window, the following dialog box appears:

Type the text you are searching for and the replacement text in the Find and Replace edit fields. Use

the radio buttons Forward/Backward to start the search by moving down from the current insertion

point towards the end of your text, or up towards the beginning. Click the Find button to start a search,

click Done if you don’t want to start a search yet. Click Replace All to replace all the occurrences of

the text appearing in the Find item with the text appearing in the Replace item.

Use the menu command Enter Selection to enter the currently selected text in the Find field of the

Find&Replace dialog box. Choose Find Again to restart a search (the fastest way to find all

occurrences of a text is to select it and choose Enter Selection and Find Again in rapid succession). Use

220 General features

Replace to replace the current selection with the text in the Replace field of the Find&Replace dialog

box. Replace and Find Again combines the last two commands. Replace All is equivalent to the

Replace All button in the Find dialog box.

Note that by using the Enter Selection command, or by copying some text and pasting it into the Find

and the Replace field, you can enter text that you cannot enter by typing in the dialog box, such as

carriage returns (¶) and tabs ().

When you choose Find... for a data window, the following dialog box appears:

The pop-up Mode specifies if you are searching for numeric matches or for textual matches.

• Select "numerical" for using a numeric comparison, where e.g. 1.0 equals 1.0000. This search mode

also allows you to search for values that are larger or smaller than a given threshold.

• Select "textual" for using a character by character comparison, where e.g. 1.0 does not equal 1.0000.

This search mode also allows you to search for cells containing a given substring or not contaning a

given substring.

Under Find, you specify the search criterium in the pop-up and the value/string to be searched for in

the edit field.

Under Replace, you specify the value/string to be used when replacing found cells.

In the group Search order you specify the order in which the cells are searched and what cells are

searched.

Select Vertical for searching column by column, from left to right. Select Horizontal for searching

row by row, from top to bottom.

Check Start from cell [1,1] to start your search with the first cell of the window. Check Start from

current cell to start the search from the first currently selected cell.

Check Search in selection only to search within the selected cells only, uncheck it to search in the

whole window.

 General features 221

Click Replace All to replace each cell matching the Find criterium.

Click Done to dismiss the dialog box but retain its settings.

Click Cancel to dismiss the dialog box without retaining its settings.

Click Find to find the next match.

Note: The Info field of the data window, the column names and the column and row numbers are not

searched.

Contextual menus

Some of pro Fit’s windows allow you to use “contextual menus”. To invoke a contextual menu, click

on a desired part of pro Fit while holding down the control key.

222 General features

Shortcuts and other options

Although most of pro Fit’s features and commands are readily accessed through its menus, there are

some more advanced or rarely used features that require the use of modifier keys like the option key,

the command key, or the shift key.

This is a short list of these features:

 action modifier keys

• Selecting a tool in the tools

palette of drawing windows

option

to keep the tool selected after drawing the corresponding object.

• Dragging objects in drawing

windows

command

to constrain the movement along 45° lines.

shift

to constrain the movement to horizontal and vertical directions.

option

to duplicate an object instead of simply moving it.

• Drawings objects in drawing

windows

option or shift

to get a square bounding box.

• Drawing lines in drawing

windows

shift

to make the line horizontal, vertical or diagonal (at 45°)

option

to make a diagonal line

• Drawing polygons in drawing

windows

option, shift

same as for lines

command double-click

to produce a corner that remains a corner even when the

polygon is smoothed.

• Resizing objects in drawing

windows

option

to keep the bounding box of the object square (height=width).

shift

to maintain the horizontal and vertical proportions of the object,

its height, or its width.

command

to resize the size of texts in a group.

• Resizing lines in drawing

windows

option

to get a line constrained to 45° directions.

shift

to maintain the direction of the original line, or to make the line

vertical or horizontal

• Clicking objects in drawing

windows

shift

to select an object without de-selecting other already selected

objects.

• Clicking graphs in drawing

windows

option & command + click

to see the plot coordinates of the point you are indicating with

the cursor.

option & command click, and then press shift

 General features 223

to select an area of the graph to be enlarged.

command double-click

to make a graph the ‘current graph’.

command & shift double-click

to remove the ‘current graph’ setting.

• Clicking nothing in drawing

windows

command + click

to zoom in, centering the clicked point in the new view.

option & command click,

to zoom out.

• Using the line style pop-up

menu in a drawing window to

change the line styles in a

legend

shift

to change the line styles of all the lines in the legend.

option

to change the line style and set the attribute ‘points connected’

for the data plot in the first row of the legend.

shift & option

to change the line styles of all the lines in the legend and set

‘points connected’ for all data plots.

• Using the point style pop-up

menu in a drawing window to

change the point styles in a

legend

shift

to change the point style of all the data plots in the legend.

• Clicking a cell in a data

window

option

to select the whole column above the clicked cell.

shift

to enlarge a selection.

• Clicking the column number

cell in a data window

command

to set the default columns (x, y, x, y) using a pop-up menu.

• Clicking on the ‘larger font

size’ controls in the text-edit

dialog box

option

to increase the font size by 1 pt only .

• Clicking on the

‘subscript/superscript position’

controls in the text-edit dialog

box

option

to change the vertical position of the selected text by 1 pt only.

• Choosing ‘New Function’

from the file menu

option

to open a new definition window containing a sample function

definition.

option/shift

to open a new definition window containing a sample program

definition.

• Importing text files option

to tell pro Fit not to ask for information and to open the text files

as data files using the current settings.

• Saving a drawing as an EPS

file.

option

to create a TEXT file containing the PostScript information.

224 General features

• Using lists in dialog boxes

(e.g. the y-column list in the

plot data dialog box).

shift click, shift and drag

to select more than one item.

shift click

to de-select an item.

• Clicking with the lens tool in

the Preview Window

command to drag a selection rectangle specifying the region to

enlarge.

option to zoom out instead of zooming in

• Selecting an item from the

Help menu in a Function

window

option

to paste the template with a ';' and a carriage return

command

to enable pasting templates and disable help panels

shift

to enable help panels and disable pasting templates

• Clicking a marker in the

Preview window

option

to transform the clicked marker into the reference marker

• Moving a marker with the

arrow keys in the Preview

window

option

to let the marker go outside the ranges of the preview.

• Using the left and right arrow

keys in a data window

option

to move the insertion point by one character within the active

data cell.

• Clicking in the data window command

to create a discontinuous selection

• Starting pro Fit option and shift

in order not to load the standard preferences file

Another commonly used shortcut is typing a period (‘.’) while holding down the command key. This is

equivalent to typing the escape key and it interrupts most of the calculations. Use it to stop the plotting

of a function, to stop fitting, to cancel printing, or to interrupt lengthy calculations.

The combination Command-key/period is also interpreted as typing ‘Cancel’ in dialog boxes. The

escape character is also interpreted as ‘Cancel’. Return or Enter are always interpreted as clicking the

outlined button.

 Appendix A: About Numbers 225

Appendix A: About numbers

Floating point numbers

pro Fit uses three different formats for representing floating point numbers (or float):

• real (or float): This format has smallest accuracy but requires minimum size. It is used in data

windows if you set the range of a column to “–1E30 ... 1E30”.

• double: This format has better accuracy but requires more size. It is used in data windows if you set

the range of a column to “–1E300 ... 1E300”.

• extended (or native double): This is the format used for internal calculations. It has the same or

better accuracy as the double format.

The following list summarizes the features of each data type for the Power Macintosh and the 68k

version of pro Fit:

 real double extended (native double)

 Power Mac 68k††

minimum negative number –3.4E38 –1.8E308 –1.8E308 –1.1E4932

maximum negative number –1.2E-38 –2.2E-308 –2.2E-308 –1.7E-4932

minimum positive number 1.2E-38 2.2E308 2.2E308 1.7E-4932

maximum positive number 3.4E38 1.8E308 1.8E308 1.1E4932

decimal digits 7–8 15–16 15–16 19–20

size (bytes) 4 8 8 10/12†

† The FPU version uses 12 bytes, the non-FPU version 10.
†† 68k applies to pro Fit 5.1 or earlier – pro Fit 5.5 and later only support PowerMac data.

Apart from the values in the list above, pro Fit knows four other numbers: 0, +INF (infinity), -INF (–

infinity), NAN. The first three of them will do what you expect them to do. E.g. 1/0 = +INF, INF/3 =

INF etc. NAN (Not A Number) is the result of any computation that cannot be carried out, such as

sqrt(-1). The occurrence of NAN values in computations is reported as a run-time error.

226 Appendix A: About Numbers

Date and Time data

pro Fit understands and works with time data, i.e. absoulte calendar dates and relative time.

The Mac OS stores dates as the number of seconds since January 1, 1904 (for the technically minded,

the date is stored as a long integer number, 8 byte long).

pro Fit uses the same convention as the Mac OS to store dates, but uses “double” floating point values

instead of integers. With this number representation, pro Fit can store and recognize dates with second

precisions until up to 1015 (this corresponds more or less to a 6 byte long integer) seconds after January

1, 1904. This means that pro Fit can store dates with second-precision up to 31 million years in the

future, and it can store dates with day-of-the-week precision up to 3.1 billion years (3 x 109 years) in

the future.

Up to about 29000 years into the future, pro Fit can store dates with a precision of milliseconds, while

it can store dates in the present with a precision of approximately a microsecond.

 Appendix B: File formats 227

Appendix B: File formats
This appendix describes the file formats used by pro Fit for transferring data or drawings to and from

other applications.

Data

The default text format

To exchange data between pro Fit and other applications, text files are used. Usually, such files hold

one or more lines of text. Each line contains all values of a row separated by “tabs” (). The lines are

separated by “carriage returns” (¶). It is possible to use other characters instead of tabs and carriage

returns (see below).

There are two standard formats of data text files produced by pro Fit:

The standard format with titles is defined as follows:

1st line: name1 name2 name3 ¶

2nd line: 0.123 1.732 1.122 ¶

3rd line: 2.233 2.125 2.126 ¶

.....

The standard format without titles is very similar, but without the column titles line.

There is an interesting exception for data text files to be loaded into pro Fit. If the first line is a single

star (*) pro Fit reads the second line as the column titles even if the file is loaded as being standard

format without titles.

Lines are separated by carriage returns ((char)(13) or '\r' for C programmers, chr(13) for

Pascal programmers).

The first line with the column titles is optional. These names are separated by tabs (character code 9,

here denoted as ' ' – (char)(9) or '\t' for C programmers , chr(9) for Pascal programmers). If

pro Fit reads a file without column titles, it sets the columns names to “Column 1”, “Column 2” etc.

A typical Pascal program for writing such a file would be:

228 Appendix B: File formats

var out:text;

...

rewrite(text,'filename');

writeln(text,'x',chr(9),'y');

writeln(text,'1.234',chr(9),'2.341');

writeln(text,'-1.244',chr(9),'3.412');

...

close(text);

Some applications produce data text files using other formats, or read data text files only when they are

in special formats. pro Fit provides options to read and write text files in other formats as well. The

details are given in the next section.

Importing text files

For reading text files, choose Open... from the File menu, choose “Text Files” from the View pop-up

and select the file to be read. You will be prompted for the following information:

If you select Import to text window, the file is opened as a non-data text file and loaded into a new

function window.

 Appendix B: File formats 229

If you select Import to data window, the file is opened as a data file and loaded into a data window.

In this case you can select either one of the standard formats or the custom format.

- If “Custom” format is not selected, pro Fit uses an intelligent translation algorithm, which

recognizes most data file formats automatically. By selecting the “With Titles” format pro Fit

interprets the first line in the text file as the column titles.

- If “Custom” format is selected, you can specify the file format yourself.

Check Header if the input data has header bytes that are neither column titles nor data. In that case,

you can specify if the header bytes are to be copied to the info field of the data window or not.

Check Column titles if the input data provides column titles.

Under the heading Lines, you can specify the formatting of the lines (rows). Either specify a delimiter

that ends the line, or a maximum number of values per line. If you specify both, the line is supposed to

end either after the given number of values or when the delimiter is encountered.

Under the heading Values, you can specify the formatting of the values (columns). The values can

either all have the same format or (if you have specified a number of values per line under the heading

"Lines") individual format. In the latter case, edit the format for each value individually by choosing

the appropriate item in the popop Edit format for Value.

The value format specifies the type (automatic, number or text, wherein automatic specifies that after

importing, any column that contains purely numerical data is converted to a number column while all

other columns are supposed to be text). The length of each value in the input data is either specified by

a delimiter, or by a fixed length of bytes, or as being a pascal string (i.e. a first byte specifying the

number of characters and a corresponding number of character bytes following).

The section Input allows you to display the contents of the input file in either textual or hexadecimal

representation.

The section Output lets you preview how the resulting data window will look like. To update that

section, click the button Update.

Saving text files

You can also save data into text files in a custom format. To do this, choose Save as... from the File

menu for your data window and choose “Text File” from the Format pop-up. In the dialog box that

appears, select Custom format:

230 Appendix B: File formats

This dialog box is very similar to the one for loading text files. Again, you can select the Column

delimiter and the Line terminator.

If Write header lines is checked, you have the option to either write a single first line with the text

specified in the edit field to the right, or to copy the whole text contained in the info field of the data

window as the header of the file.

If Write column titles is checked, the next line contains the column names separated by the column

delimiter.

Check Optimize size to write the numbers with as few characters as possible, without loosing

precision.

The native data format

If you want to exchange binary data with pro Fit, you can use pro Fit's native file format. A description

of this format is given in the technical note “pro Fit file formats” in the folder “Notes” that comes with

the pro Fit package.

Drawings

There are various ways to export pro Fit drawings to other applications, and pro Fit provides several

image formats to do so.

You can export data through the clipboard, by drag-and-drop as well as by means of files:

 Appendix B: File formats 231

Exporting through the clipboard by means of copy and paste is the most traditional way. When you

copy a drawing to the clipboard, pro Fit provides picture and pdf data for the target application to use

(see below).

Exporting by drag-and-drop may be more convenient in some situations. When you export by means of

drag-and-drop, pro Fit also provides picture and pdf data for the target application to use (see below).

Exporting by files requires you to save the drawing window using a custom format. This is more

cumbersome but allows you to use a variety of standard file formats, such as pdf, tiff, gif, png and jpg.

To export a drawing in a file, choose Save As from the File menu, choose the desired file format from

the Format pop-up, and select the appropriate options by clicking the button Options.

Image formats

The image formats supported by pro Fit are:

Pictures (PICT format): This is the classic format for images under MacOS. It provides compatibility

with a large number of applications, but does not support all modern imaging features. In particular, it

does not support transperancy and poorly supports rotated text or unicode text. pro Fit allows you to set

various options for exporting pictures. The default options can be set in the PICT Options panel of the

Preferences command (pro Fit menu), the options for exporting into a file can be accessed throgh the

button Options in the Save As dialog box.

PDF (Portable Document Format): This is a very powerful imaging format recognized by a large

number of applications. pro Fit exports PDF files for saving drawings, but it also supports the exchange

of PDF data through the clipboard.

EPS (encapsulated postscript): This file format is also very common, and it can e.g. be used for

exporting drawings to LaTeX editors. Note: pro Fit does not support unicode text in EPS files, but only

the ISOLatin1 character set. pro Fit generates Postscript level 2 code.

JPEG (Joint Photographic Experts Group): This is a very common file format for exchanging images.

It is, however, lossy, and not well suited for line drawings.

GIF (Graphics Interchange Format): This is a non-lossy, bitmap based file format widely used in web

browsers and other applications. It was defined by Compuserve Inc. in 1987 and 1989. The image can

have up to 256 colors and 16'000 x 16'000 pixels. For compression the LZW (Lempel-Ziv-Welch)

algorithm is used, patented by Unisys.

PNG (Portable Network Graphics): This is an extensible file format for the lossless, portable, well-

compressed storage of raster images, supported by a large number of applications. PNG is the most

modern format with excellent compression. PNG provides a patent-free replacement for GIF and can

also replace many common uses of TIFF. Indexed-color, grayscale, and truecolor images are

supported, plus an optional alpha channel. Sample depths range from 1 to 16 bits.

TIFF (Tag Image File Format): This is a non-lossy, bitmap based file format supported by a large

number of applications. TIFF describes image data that typically comes from scanners, frame grabbers,

and paint- and photo-retouching programs.

232 Appendix C: Apple Script Cross Reference

 Appendix C: Apple Script Cross Reference 233

Appendix C: Apple Script Cross Reference
The following table is a cross reference (incomplete) between the functions and procedures of pro Fit’s

built-in programming language and equivalents available under Apple Script.

pro Fit programming language Apple Script equivalent

- do script

- evaluate

- get data

- quit

- set data

AddParameterSet add parameter set

AttachProgram attach

BinData bin data

CallProgram run program

Capture capture

Clear clear

CloseWindow close

Compile compile, do script

Copy copy

Cut cut

DataExportOptions data export options

DataImportOptions data import options

DataTransform transform

data[i,j] use the cell elements of the data window, e.g.

get value of cell 1 of column 2

DeleteFunction delete

DeleteFunction delete function

DeleteParameterSet delete parameter set

DeleteProgram delete

DeleteProgram delete program

DeleteShape delete shape

234 Appendix C: Apple Script Cross Reference

DeleteTag use delete tag

Extrema find extrema of

FFT FFT

Fit fit

GetColumnProperty use the properties of the column class, e.g.

get format of column

GetDataWindowProperty use the properties of the classes windowor table, e.g.

get nrRows of window “MyData”

GetFunctionProperty use the properties of the class function, e.g.

get nrParams of function “Sin”

GetGlobalData use get global data

GetOption use the properties of the pro Fit application class, e.g.

get decimals

GetParameterProperty use the properties of the class parameter, e.g.

get name of parameter 1

GetProgramProperty use the properties of the class program, e.g.

get idleCallTime of program “Prog”

GetResult use the results property and the calculation results class,

e.g.

get chiSquared of results

GetShapeProperty use the properties of the class shape, e.g.

get value of shape “checkbox 1”

GetTag use get value of tag

GetWindowProperty use the properties of the classes window,drawingWindow

or table, e.g.

get name of front window

Integrate integrate

InverseFFT inverse FFT

LoadParameterSet load parameter set

NewDataWindow make table

NewDrawingWindow make drawingWindow

NewFunctionWindow make textWindow

NewShape make shape

OpenData use open file “...” as data window

OpenFile open

OpenText use open file “...” as text window

 Appendix C: Apple Script Cross Reference 235

Optimize optimize

PageSetup page setup

Paste paste

PlotData plot data

PlotFunction plot

Print print

ReduceData reduce data

Roots find roots of

SaveParameterSet save parameter set

SaveWindow save

SelectAll select all

SelectCell use select, e.g. select cell x of column 1

SelectColumn use select, e.g. select column 3

SelectFunction use select, e.g. select function “Sin”

SelectRow use select, e.g. select row 4

SelectWindow use select, e.g. select window “Results”

SetColumnProperties use the properties of the column class, e.g.

set name of column 3 to “data”

SetDataWindowProperties use the properties of the classes windowor table, e.g.

set nrCols of window “MyData” to 50

SetFitParamRange set fit range of parameter

SetFunctionProperties use the properties of the class function, e.g.

set shown of function “Sin” to true

SetGlobalData use set global data

SetLegendProperties set legend properties

SetOptions use the properties of the pro Fit application class, e.g.

set default column type to real

SetProgramProperties use the properties of the class program, e.g.

set idleCallTime of program “Prog” to 131203

SetShapeProperties use the properties of the class shape, e.g.

set xSize of shape “rect” to 231

SetTag use set value of tag

SetWindowProperties use the properties of the classes window,drawingWindow

or table, e.g.

set font of window “Func” to “Helvetica”

236 Appendix C: Apple Script Cross Reference

Sort sort

Statistics calculate statistics -- use pro Fit s property “results” for

retrieving the results, e.g.

 get statMean of results

Tabulate tabulate

TabulateExtrema tabulate extrema of

TabulateIntegral tabulate integral of

TabulateRoots tabulate roots of

Transpose transpose

Undo undo

Write write

WriteLn write line

 Index 237

Index
1/x axes, 82
accuracy, 223, 242
active, 140, 165
active data window, 44
active parameters, 119
add to menu, 187
Alert, 142
align, 65
analyze submenu, 50
Andrew s sine, 126
Andrew s sine; .i.Tuckey s biweight, 110
Apple Events, 209
Apple Events, 11
Apple Script, 11, 208

classes, 212
methods, 212

Apple Scripts, 190
arguments, 154
arrays, 174, 187
arrow keys, 29
arrows, 68, 73
attached programs, 191
auto, 49
auto labels, 95
auto-search, 127
axes, 81, 92
axis scaling, 82
backward, 65
bad, 165, 205
bar charts, 88
batch processing, 209, 210, 212
binning, 39
bit-array, 175
bitwise operation, 175
boolean, 142, 161, 170, 187
breakpoints, 189
Browse, 149
buttons, 71, 193
Calling sequence, 189
CallProgram, 212
case statement, 187
char, 170, 173
Check, 165, 169, 205
checkboxes, 71, 193

chi-squared, 111, 112, 126
circle, 67
CleanUp, 202
ClearData, 157
clipboard, 79
color, 72
color plot, 89
Column Format, 29
column width, 30
columns, 28

deleting, 44
format, 29
inserting, 44

comma, 225
comments, 139
comparison, 161
Compile & Add to menu, 138, 141, 143
compiler, 137, 187
complex, 170
confidence intervals, 112, 123, 124, 134
confidence intervals, 112
const, 153
Const menu, 149
constant, 140, 153, 165
constant parameters, 119
constants, 153, 205
contextual menus, 238
contour plot, 89
control shapes, 71, 193
convergence, 133
coordinate system, 62
copy, 74

legends, 90
covariance matrix, 114, 115, 126
create publisher, 74
current data set, 44, 54
current data window, 44, 49, 176
current data window, 44
current drawing window, 177
current function, 54
current graph, 178, 180
curvature matrix, 115
custom ticks, 95
cut, 74

238 Preferences

dashes, 72
data array, 141
data import, 32
data points, 69, 98
data reduction, 35
data set

current, 44
data transform, 33
data transformation, 33
data window

current, 176
data windows, 28

column width, 30
data transform, 33
date, 30
discontinuous selection, 29
dragging columns, 28
home field, 28
info field, 28
precision, 29, 223
range, 29, 223
resizing, 28, 44
selecting data, 29
time, 30

DataOK, 142
date format, 227
dates, 30
debugging window, 188
default columns, 44, 45
default columns, 240
default PICT style, 221
default style, 105
definition syntax, 152
degrees of freedom, 115
deleting rows and columns, 44
derivatives, 114, 122, 166, 169, 203, 204
description, 140, 162
deviation functions, 110
dialog mode, 106
digits, 95, 223
discontinuous selection, 29, 36
discontinuous selection, 56
Display As Dialog, 107
double, 170, 242
double clicking, 65
Drag and Drop, 64
drag&drop, 74

drawing, 63
objects, 63

Drawing Info, 62
drawing window, 61

current, 177
dyda, 166
ellipse, 67
EPS files, 76
error analysis, 112, 122, 123
error analysis, 112, 124
error bars, 99
error distributions, 122, 126
errors, 109, 134
evaluation of simple expressions, 233
Exit, 159
exponential distribution, 110
exponential function, 133
exporting pictures, 74
expression evaluation, 233
extended, 170, 242
extended accuracy, 170
extensions, 231
external code, 188
extrema, 50, 52
false, 160, 170
FFT, 42
file formats, 244
file info, 234
fill patterns, 72
find, 236
first, 48, 167, 169, 204
fitting, 59, 108
fitting algorithms, 112
fitting mode, 48
fitting multiple functions, 128, 131
fitting ranges, 126
fitting tool, 120
fitting tool, 57
flip, 65
float, 242
floating point coordinates, 62
font

default settings, 229
for loop, 141, 157
formats, 244
forward, 65
Fourier transform, 41

 Index 239

frame, 100
Func, 204
function, 154, 162

definition, 136, 161
fitting, 108

function plug-in, 190
functions, 46, 136
Gaussian distribution, 110, 114
get info, 234
GIF

files, 77
global variables, 206
good, 205
graph, 90

axes, 92
double-clicking, 91
frame, 100
grid, 101
labels, 95
lines, 96
main dialog box, 91
plots, 98
style, 104

graph submenu, 91
grid, 101
Gridding, 40
group, 65
Halt, 159
help, 233

balloons, 233
tags, 233

Help menu, 149
histograms, 88
if statement, 139, 142
importing pictures, 79
inactive, 140, 165
inactive parameters, 119
INF, 160, 242
initial parameters, 122
Initialize, 166, 169
InitializeFunc, 203
InitializeProg, 202
input, 176
inserting rows and columns, 44
integer, 170
integral, 50
integrate, 52

Interpolation, 40, 52
inverse Fourier transform, 41
JPEG files, 77
justification, 67
Keynote, 74
kurtosis, 39
labels, 95

custom, 95
Last, 168, 169, 205
legend, 90
Lens check box, 63
Levenberg-Marquardt algorithm, 113, 124,

126
Levenberg-Marquardt algorithm, 112, 113
line thickness, 72
linear axes, 82
lines, 67, 239, 240
linking, 188, 199
Load Plug-in, 199
local function, 154, 162
local procedure, 154, 162
logarithmic axes, 82, 94
logarithmic plot, 134
loops, 157
Lorentzian distribution, 110
macros, 11, 136, 141, 208
main axes, 82
main coordinate axes, 82
markers, 57, 226
matrix, 170
maximum, 39, 50, 52
mean, 39
mean absolute deviation, 39, 110
mean square deviation, 110, 111, 113
median, 39
minimum, 39, 50, 52
mode, 165
modules, 47
Monte Carlo algorithm, 113
Monte Carlo Fit, 126
Monte-Carlo algorithm, 113
multiple x-values, 128
multi-preferences-file, 191
NAN, 242
nonlinear fit, 126, 127, 128
normal distribution, 110
normal PICT style, 221

240 Preferences

normal style, 105
nrRows, 141
number of digits, 223
numerical accuracy, 242
Nyquist critical frequency, 42
ok, 165
operators, 160
optimize, 50
optional parameter lists, 158
output, 176
outputs

default values, 162
page setup, 217
parameter defaults, 164
parameter limits, 48, 115, 119
parameter limits, 127
parameters, 119

defaults, 140, 162
mode, 140
poor definition, 134
redundancy, 133

parameters window, 161
params -->>, 125
partial derivatives, 114, 115, 122, 166
partial derivatives, 203, 204
Pascal, 187
paste, 79
pb, 201
pdf, 220
PDF files, 75
PICT, 219

files, 74
options, 74, 77, 219

PICT style, 220
picture settings, 220
pictures, 74, 79, 219
plot

data, 86, 89
function, 82
tabulating, 100

plots, 98
plotting

preferences, 224
plotting, 79
plug-ins, 11, 189, 191, 199

loading automatically, 190
PNG files, 77

pNumber, 165
pointers, 188
points, 49, 69, 98, 240
polygons, 67, 239
population, 16
power operator, 141, 160
precedence, 160
precedence, 161
preferences, 104, 222

Drawing, 223
Extensions, 231
File export, 230
Functions, 228
General, 222
Interface, 227, 229
PICT Options, 219
Plotting, 224
Prefs file, 232
Preview, 226
printing, 217

preferences file, 191
loading and saving, 232

preferences files, 191
preview, 54

drag tool, 57
fitting tool, 57
markers, 57
preferences, 226
zoom tool, 57

preview window, 123, 125
preview window, 54
printing, 217

at printer s resolution, 217
pro Fit plug-ins, 190
pro Fit plug-ins folder, 190
pro Fit preferences, 222
probability axes, 82
procedure, 154, 162

Derivatives, 166
First, 167
Initialize, 166
Last, 168

program
attaching to windows, 191
definition, 136, 149, 152, 236
linking, 199

program plug-in, 190

 Index 241

programs, 136, 141
programs, 11
progress window, 122, 124
radio buttons, 71, 193
range of numbers, 242
real, 170
record macros, 151
records, 187, 188
rectangle, 67
redraw button, 57
redundancy, 133
remove function or program, 190
repeat loop, 157
replace, 236
reshape, 68
reshape mode, 68
Resize Table, 44
resizing data windows, 44
resizing drawing objects, 64, 239
resolution, 74
Robust algorithm, 115, 124, 126, 127, 128
roots, 50, 58
rotate, 64
roundoff errors, 62
rows, 28

deleting, 44
inserting, 44

run-time error, 242
save plug-in, 190
scaling, 82
scatter plot, 86
scatter plots, 88
script editor, 209
scripting, 208
scripts, 136, 141, 190, 208
select all, 29
selecting drawing objects, 63
selection, 29, 36, 38

discontinuous, 29
selection, 56
selection only, 34
send, 65
SetUp, 202
Shape Settings, 106, 197
shapes, 177, 186

names, 106
properties, 106

sinc, 164
singularity, 133
skewness, 39
skyline plots, 88
smooth, 68
sort, 36
special procedures, 169
Spline, 45, 52
spreadsheet, 11
stairway plots, 88
standard deviation, 39
standard deviations, 111, 114, 115, 134
Start Recording, 152
starting parameters, 133
statement, 156
static variables, 206
statistics, 37
Stop Recording, 152
string, 170, 173
styles, 104
subscript, 66, 240
sum, 39
superscript, 66, 240
syntax, 149, 152
syntax coloring, 228
system requirements, 10
table of extrema, 52
table of plots, 100
table of roots, 51
Table of Z-Values, 89
Tabulate Integral, 52
tabulators, 228
tags, 184
tags (help), 233
text files, 244, 245
text objects, 66
tick marks, 96
ticks, 96

custom, 95
TIFF files, 77
time, 30
time format, 227
toolbox routines, 188
tools palette, 63, 66
transpose, 37
true, 160, 170
Tuckey s biweight, 126

242 Preferences

Tuckey s biweight;, 110
type definitions, 154
types, 170, 187, 205
typographical minus, 225
ungroup

legends, 91
update, 165, 205
user programs, 35
var, 153
var parameters, 154
variable, 153
variables, 153
variance, 39
vector, 170
while loop, 156, 157
window ID, 184

windows
debugging, 188
drawing, 61
parameters, 119, 161

x-column, 44
x-errors, 109, 113, 114, 115, 116, 121
x-errors, 111
XYZ Columns, 89
y-column, 44
y-errors, 109, 115, 121, 134
z-axes, 82
zoom factors, 61
zoom popup menu, 62
zooming, 106
 (or pi), 160

